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What power-seeking theorems do not
show

Abstract

Recent years have seen increasing concern that artificial intelligence may soon pose an
existential risk to humanity. One leading ground for concern is that artificial agents
may be power-seeking, aiming to acquire power and in the process disempowering
humanity. A range of power-seeking theorems seek to give formal articulation to the
idea that artificial agents are likely to be power-seeking. I argue that leading theorems
face five challenges, then draw lessons from this result.

1 Introduction

Recent years have seen increasing concern that artificial intelligence may soon pose an

existential risk to humanity. Significant concerns have been expressed by artificial intel-

ligence pioneers such as Yoshua Bengio (2023), Geoffrey Hinton (Metz 2023), and Stuart

Russell (2019). Leading artificial intelligence researchers have signed statements (Center

for AI Safety 2023; Future of Life Institute 2023) calling for increased attention to exis-

tential risks, and many express sympathy for risk claims in expert surveys (Grace et al.

2016, 2022; Müller and Bostrom 2016; Zhang et al. 2022). A raft of organizations have

devoted significant resources to studying and mitigating existential risks from artificial

intelligence.1 Concerns about existential risk are defended at book length by leading

scholars (Bostrom 2014; Russell 2019), in policy reports (Carlsmith 2021; Cotra 2020), and

in academic papers (Bales et al. 2024; Bostrom 2012; Turner et al. 2021).

One leading ground for concern is that artificial agents may be power-seeking, aim-

ing to acquire power and in the process disempowering humanity in a permanent and

catastrophic fashion (Bostrom 2012; Carlsmith 2021; Dung 2024; Ngo and Bales forthcom-

ing). Typically, concerns about power-seeking are rooted in the idea that power is an
1These include nonprofits such as the Center for AI Safety and the Center for the Governance of AI;

government institutes such as the UK AI Safety Institute and the US AI Safety Institute; frontier AI lab-
oratories such as OpenAI and Anthropic; grantmakers such as Open Philanthropy and the Future of Life
Institute; dedicated laboratories such as Conjecture and Redwood Research; and academic centers such as
the Stanford Center for AI Safety and the CMU Safe AI Lab.
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instrumentally convergent goal, roughly in the sense that a wide variety of agents will

find power conducive to achieving their goals and hence will pursue power in order to

achieve their goals (Bostrom 2012; Omohundro 2008).

Recent years have brought a range of power-seeking theorems which seek to give

formal articulation to the idea that artificial agents are likely to be power-seeking (Benson-

Tilsen and Soares 2015; Krakovna and Kramar 2023; Turner et al. 2021; Turner and Tadepalli

2022). This paper examines the bearing of power-seeking theorems on the likelihood that

artificial intelligence may soon pose an existential risk to humanity.

In more detail, this paper has four aims. The first is to clarify the concept of instrumental

convergence and its role in arguments that power-seeking artificial intelligence poses an

existential risk (Section 2). The second is to articulate five challenges facing many recent

power-seeking theorems (Section 3). The third is to show how these challenges arise

in recent power-seeking theorems, focusing on the Regional Allocation Model of Tsvi

Benson-Tilsen and Nate Soares (2015) and the Orbital Markov Model of Alexander Turner

and colleagues (2021). The fourth is to draw lessons for the argument from power-seeking

and the direction of future research (Section 6).

2 Power-seeking and instrumental convergence

The argument from power-seeking claims that artificial agents with a wide variety of

goals will be motivated to seek power, thereby disempowering humanity and causing

an existential catastrophe (Bostrom 2014; Carlsmith 2021, forthcoming; Ngo and Bales

forthcoming; Turner et al. 2021). Many formulations of the argument are possible, but here

is a leading formulation due to Joe Carlsmith (Carlsmith 2021, forthcoming). Carlsmith

holds that by 2070:2

(Possibility) It will become possible and financially feasible to build relevantly
2This argument is taken directly from Carlsmith (forthcoming), with two modifications. First, I treat

the premises as unconditional claims, whereas Carlsmith conditionalizes each premise on the previous
premises. Second, I have added descriptive labels to each premise. A slightly expanded version of this
argument can be found in (Carlsmith 2021).
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powerful and agentic AI systems.

(Incentives) There will be strong incentives to do so.

(Alignment Difficulty) It will be much harder to build aligned (and relatively

powerful and agentic) AI systems than to build misaligned (and relevantly

powerful and agentic) AI systems that are still superficially attractive to deploy.

(Power Seeking) Some such misaligned systems will seek power over humans

in high-impact ways.

(Disempowerment) This problem will scale to the full disempowerment of

humanity.

(Catastrophe) Such disempowerment will constitute an existential catastrophe.

There are many ways to push back against the argument from power-seeking. We might

raise technological challenges to Possibility, questioning the technological feasibility of

constructing systems powerful enough to disempower humanity by 2070 (Landgrebe and

Smith 2022; Thorstad forthcoming). We might raise financial or sociopolitical challenges

to Incentives, arguing that no actor with the means to construct such systems will have

strong incentives to do so (Cremer and Kemp 2021). We might unpack the different

notions of disempowerment involved in Disempowerment and question whether the

most problematic will come to pass (Bales forthcoming). Or we might deny Catastrophe,

holding that a future without humanity would not be catastrophic, for example because

the world is not made better by improving the lives of individuals who would otherwise

not exist (Narveson 1973; Frick 2017), because our descendants might suffer (Benatar

2006), or because our posthuman replacements might be wiser and more numerous than

us (Armstrong and Sandberg 2013; Greaves and MacAskill 2021).

This paper pursues a different route. Leading arguments for Alignment Difficulty

and Power Seeking appeal to the idea that power is an instrumentally convergent goal
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(Bostrom 2014; Carlsmith 2021). In rough outline, Power Seeking is defended on the

grounds that power is valuable to agents with many different goals, and Alignment

Difficulty is defended on the grounds that it is difficult to identify useful goals for which

power would not be valuable. I want to challenge this appeal to instrumental convergence.

What, exactly, does instrumental convergence hold? A leading statement of instru-

mental convergence is due to Nick Bostrom:

(IC-B) Several instrumental values can be identified which are convergent in

the sense that their attainment would increase the chances of the agent’s goal

being realized for a wide range of final goals and a wide range of situations,

implying that these instrumental values are likely to be pursued by many

intelligent agents. (Bostrom 2012, p. 76)

IC-B contains an inference between two claims that we may have reason to treat separately

(Gallow forthcoming; Thorstad 2023):

(Goal Realization) There are several values which would increase the chances

of an agent’s final goal being realized, for a wide range of goals and a wide

range of situations.

(Goal Pursuit) There are several values which would be likely to be pursued

by a wide range of intelligent agents.

IC-B asserts both Goal Realization and that Goal Realization implies Goal Pursuit.

Establishing Goal Pursuit may be more difficult than establishing Goal Realization

for several reasons. One challenge that will not be pursued here is that many existing

arguments from Goal Realization to Goal Pursuit assume that artificial agents are well-

modeled as having and optimizing goals, often in something like the sense of expected-

utility maximization. That may not be obvious (Bales 2023).

The challenge that I want to pursue is that Goal Pursuit differs from Goal Realization in

speaking of agents rather than goals, and of what agents will do rather than what would
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increase the chance of their goals being realized. This makes Goal Pursuit much harder to

demonstrate, since agents have multiple goals and are not always willing to pursue one

goal at the expense of all others. For example, there is no doubt that money is conducive

to the achievement of many goals that I have. However, it does not follow that I would

rob a bank tomorrow if I could get away with it. That is not because I have no use for the

money, but rather because I also value the welfare of others, fairness and the rule of law.

While I may be willing to bend these scruples from time to time, I am not willing to toss

them dramatically aside, even for great instrumental gain. In the same way, what must

be shown is not just that artificial agents would find power greatly conducive to many of

their goals, but also that they will be so utterly unconcerned with the consequences that

they find the complete and existentially catastrophic disempowerment of humanity to be

an acceptable sacrifice in exchange for power.

This last claim reminds us that even Goal Pursuit is not enough to ground the argument

from power-seeking, since it says nothing about the degree of power that is likely to be

pursued. To ground Disempowerment and Catastrophe, the argument from power-

seeking needs to claim:

(Catastrophic Goal Pursuit) There are several values which would be likely to

be pursued by a wide range of intelligent agents to a degree that, if successful,

would lead to the permanent and existentially catastrophic disempowerment

of humanity.

Catastrophic Goal Pursuit is a much stronger claim than Goal Pursuit. Most of us some-

times pursue money and other forms of power. Indeed, I very much hope to be paid

monthly for my work. Many fewer of us pursue great power at significant expense to

others, for example by robbing a bank. And precious few pursue global power, seeking

total and permanent control over humanity. That is not just because we think we would

not be successful but also, for most normal humans, because we count the prospect of

world domination as rather unappealing.
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Catastrophic Goal Pursuit is a strong claim, and it should be given a correspondingly

strong argument. In this paper, I argue that Catastrophic Goal Pursuit has not been

adequately supported by recent power-seeking theorems. First, I raise some general

challenges that will arise in discussion of specific power-seeking theorems (Section 3).

Then, I discuss two specific power-seeking theorems and show how the challenges prevent

them from providing adequate support for Catastrophic Goal Pursuit (Sections 4-5).

3 Five challenges

The purpose of this section is to introduce five challenges to leading power-seeking

theorems and to explain why these challenges reduce the support provided by power-

seeking theorems for the argument from power-seeking. Sections 4-5 will then show how

two leading theorems face many of these challenges.

3.1 Premise shifting

We saw in Section 2 that the argument from power-seeking rests on Catastrophic Goal

Pursuit. However, many power-seeking theorems most directly establish premises that

differ from Catastrophic Goal Pursuit in one or more of three ways. Some establish

Goal Pursuit for goals such as keeping options open and avoiding being shut down,

but not for the goal of achieving power (Krakovna and Kramar 2023; Turner et al. 2021;

Turner and Tadepalli 2022). Others establish Goal Realization or Goal Pursuit, but not

Catastrophic Goal Pursuit, showing that the modeled agents will have some incentive

to pursue the goals in question, or even perhaps that they will pursue these goals to

some extent, but not yet showing that agents will pursue any goal strongly enough to

result in permanent human disempowerment (Turner et al. 2021). Still others directly

establish premises about normative tradeoffs that differ substantially from Catastrophic

Goal Pursuit (Benson-Tilsen and Soares 2015).

The first two premises do not directly establish Catastrophic Goal Pursuit. They could,
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perhaps, be used to argue for Catastrophic Goal Pursuit, but we will see that the authors

do not provide a detailed argument linking any of the above premises to Catastrophic

Goal Pursuit. The third premise might, if true, establish Catastrophic Goal Pursuit, but

not in a way that leans on instrumental convergence concerns, and not in a way that takes

us substantially beyond familiar discussions of normative tradeoffs.

3.2 The wise fool problem

One complaint that has been raised before (Goertzel 2015; Loosemore 2014; Müller and

Cannon 2021) is that many arguments treat artificial agents as at once very wise, and

very foolish. Agents are treated as wise enough to disempower or destroy humanity,

despite limited starting resources and active human opposition. In motivating this view,

authors often suppose that agents will have sophisticated cognitive capacities including

flexible internal representations and strong capacities for reasoning, planning and agency.

However, agents are simultaneously treated as foolish in ways that make it hard for them

to represent and respond to reasons against permanently disempowering humanity. For

example, the models below will represent agents using many tools from simple forms of

reinforcement learning.

One way to see why reinforcement learning may be an inappropriately simple model

is to consider comparative psychology. It is very common to represent large parts of the

cognition of nonhuman animals using reinforcement learning (Sutton and Barto 2018).

However, reinforcement learning is generally held to capture only a badly incomplete

slice of human cognition. Since the defeat of behaviorism, it has been widely agreed that

human cognition cannot be fully understood without adopting a cognitive perspective,

which speaks of sophisticated symbolic representations and processes of reasoning and

planning which operate on these representations in ways that far exceed the capacities

of reinforcement learning agents (Shteingart and Loewenstein 2014). Although leading

reinforcement learning models are increasingly impressive (Arulkumaran et al. 2017;

Botvinick et al. 2019), insofar as existentially threatening artificial agents are treated as
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wise enough to permanently disempower humanity, it would seem appropriate to use

much more sophisticated models of the cognitive structure of artificial agents.

Perhaps there is some temptation to assume that because many leading models today

are trained using simple forms of reinforcement learning, the models themselves learn

nothing more than the optimal policy in a reinforcement learning problem. However,

this is increasingly thought to confuse two types of optimization: internal and external

optimization (Hubinger et al. 2019; von Oswald et al. 2023).3 External optimization refers

to the function that an agent is rewarded for optimizing during training. For example,

the agent may be rewarded for producing humanlike text in response to textual inputs,

or for maximizing the time that users spend on a website. Internal optimization refers to

the internal functions that an agent learns to optimize in order to produce responses. Not

everyone agrees that artificial agents will learn to internally optimize any function (Bales

2023), but even those who do widely take it that sophisticated artificial agents will learn a

rich set of internal processes over complex internal representations in order to succeed on

a wide variety of training tasks, if they have not already done so. Although the end result

may be good performance on a simple reinforcement learning task, achieving a good

result may require a complex internal structure that goes far beyond simple reinforcement

learning.

3.3 Designer neutrality

The models surveyed below make few, if any, assumptions about the designers of artificial

agents. For example, Turner and colleagues (2021) assume only that agents will be

rewarded according to some reward function and prove that any desirable reward function

could be rotated to produce many undesirable reward functions. This approach faces two

challenges.

First, it does not directly tell us what we want to know. We want to know what is likely

to happen given the design choices that will be made by human designers, not what might

3AI safety researchers often use the terms mesa- and meso-optimization.
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happen if no judgment were applied during the design of artificial agents. Otherwise, we

learn at most that some judgment should be applied during the design of artificial agents.

Of course, it might be argued that choosing the right reward function will be difficult for

human designers. But this must be argued for, not assumed.

Second, recent results by Dmitri Gallow (forthcoming) suggest that if little is assumed

about the designers of artificial systems, Goal Pursuit holds only for a restricted handful

of values: preserving options, preserving current goals or aims, and leaving less of the

future up to chance. In this vein, it is perhaps less surprising that Turner and colleagues

(2021) will argue below that Goal Pursuit holds for option preservation and shutdown

avoidance. This suggests that making few assumptions about the designers of artificial

systems may not be a good way to directly demonstrate what needs to be shown: that Goal

Pursuit holds for the pursuit of power, and scales to the level of Catastrophic Goal Pursuit.

Perhaps that is unsurprising: it is, after all, hard to prove something from nothing, so we

should not expect strong results to follow without substantive assumptions. In this way,

it is not clear that designer neutrality is a good strategy for establishing Catastrophic Goal

Pursuit.

3.4 Threat durability

To show that artificial agents pose a significant existential risk to humanity, it is not

enough to show that there are some pathways through which artificial agents could pose

an existential threat. We also need to show that these threat pathways cannot be easily

fixed. Otherwise, we might count it unlikely that the modeled threats will be realized in

practice. Some of the threats modeled below will admit of simple technical fixes. In this

sense, readers might justifiably doubt that a durable existential threat has been found.

Of course, it might be argued that the existence of some demonstrable threats helps us

to see how many other threats could arise. But this must be argued, not assumed. And

in particular, it must be argued for in a way that draws substantially on the mathematical

content of existing power-seeking theorems. Otherwise, those theorems will not be doing
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much to advance the argument beyond its existing state.

3.5 Amorality

Many power-seeking theorems consider agents who lack substantial moral understanding

or moral motivation. This provides an important limitation on the scope of the results.

Regarding understanding, there is good evidence that even existing systems can reproduce

a wide range of humanlike moral judgments (Aharoni et al. 2024; Schramowski et al.

2022), so it cannot be assumed without argument that superintelligent agents will fail to

understand that permanently disempowering humanity is wrong. Regarding motivation,

it could certainly be argued that superintelligent agents will not be motivated by the

reasons which make disempowering humanity wrong. But this must be argued for, not

assumed.

Note here that it is not enough to suggest that artificial agents may have imperfect

moral understanding or moral motivation. The same is true of many agents, including

the author of this paper. What needs to be argued is that artificial agents will have

such deficient moral understanding or motivation that they will be led to pursue the

permanent disempowerment of humanity. If this is not argued for, then the scope of the

argument from power-seeking will be limited to agents with highly deficient levels of

moral understanding and moral motivation.

3.6 Taking stock

In this section, we developed five general challenges that will recur in discussion of the

power-seeking theorems. First, many theorems shift the premise, arguing directly not

for Catastrophic Goal Pursuit but rather for some other claim. Second, leading theorems

face the wise fool problem: they treat artificial agents as wise enough to permanently

disempower humanity, but foolish enough to be modeled using simple forms of rein-

forcement learning widely taken to be inadequate even to the complexities of human
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cognition. Third, leading theorems are designer-neutral, making few assumptions about

how systems will be designed. Fourth, some of the threats identified are not very durable

against technological solutions. Finally, many theorems discuss agents with significant

deficits in moral understanding and motivation, leaving open the question of how more

moral agents might behave.

To see how these challenges arise in practice, let us consider two of the best-known

power-seeking theorems. This will allow us to deepen our understanding of the chal-

lenges, and to see why the challenges are aptly raised against some leading power-seeking

theorems.

4 The Regional Allocation Model

One of the earliest formalizations of the argument from power-seeking is due to Tsvi

Benson-Tilsen and Nate Soares (2015). In this section, I present Benson-Tilsen and Soares’

Regional Allocation Model (Sections 4.1-4.2), then show (Sections 4.3-4.4) how the model

confronts many of the challenges raised in Section 3.

4.1 The model

In rough outline, the Regional Allocation Model envisions a universe divided into a finite

number of regions. A superintelligent decisionmaker has preferences over the state of

each region and aims to maximize the sum of regional utilities over a finite number of

time-steps. She does this by allocating resources to each region and taking actions within

each region at each time-step. To a first approximation, Benson-Tilsen and Soares find

that the superintelligent decisionmaker will not mind draining resources from regions to

which she is indifferent, and will strictly prefer to drain resources from one region if she

thinks she can gain more utility by shifting them elsewhere.

More concretely, the Regional Allocation Model represents the universe as divided into

n regions R = {r1, . . . , rn}. Each region r has a set Sr of states that it can occupy, and acts
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Ar that the superintelligent agent can take, defined by their effects on the region. Regions

evolve in discrete timesteps through a Markov process T : Ar × Sr −→ Sr. That is, the state

of region r at the next time-step depends only on its current state and the region-specific

act chosen. This lasts until some final time-step tk.

At each time-step t, the agent has some set Rt of resources to allocate among regions.

Unspent resources Ut are saved for the next time-step. Resources Rr,t spent in each

region may yield new resources N(Rr,t, sr, ar) depending on the regional allocation Rr,t,

the region’s state sr and the regional act ar. Total resources at the next time-step then

include unspent resources together with the resources produced in each region, evolving

as Rt+1 = Ut ∪
⋃

r N(Rr,t, sr, ar).

Zooming out, at each time t the agent chooses for each region r an act ar and resource

allocation Rr,t. A composite act at t specifies, for some regions R′, the acts chosen and

resources allocated in each region. A partial strategy for R′ specifies composite acts to

be taken in R′ at all time steps. A composite act becomes a universal act if it applies

to all regions, and a partial strategy composed of universal acts is a (complete) strategy.

Strategies may be combined across regions, so that for strategies π, π′ the strategy πRπ′

agrees with π in regions R and follows π′ elsewhere.

For each region, the agent has a utility function Ur : Sr −→ R mapping states of the

region into real-valued utilities. This induces a global utility function U = ΣrUr which

is summative across regions. Agents seek to maximize the undiscounted total utility

realized by strategies, so that a strategy π which leaves each region r in states sr,t across

time realizes utility U(π) = Σr,tUr(sr,t).

Partial strategy π is null in region r if it does not produce new resources in r, in the

sense that N(Rr,t, sr, ar) ⊆ Rr,t across all states sr reached by the strategy and composite acts

(Rr,t, ar) performed by the strategy. A partial strategy preserves resources in r if it always

returns the invested resources, in the sense that N(Rr,t, sr, ar) ⊇ Rr,t with notation as above.

A cheap lunch in region r is a partial strategy which preserves resources and sometimes

yields more, in the sense that it is non-null in r. Benson-Tilsen and Soares prove three

12



theorems, the first two involving cheap lunches.

First, agents are happy to eat a cheap lunch in any region to which they are indifferent,

in the sense that their regional utility function is constant across all states of the region.

(Theorem 1: Cheap lunches are fine) Suppose an agent is indifferent to region

r. Suppose there is an optimal strategy π∗ and a cheap lunch πyum in r that

is compatible with π∗ in the sense that the composite strategy π∗R\{r}πyum of

following π∗ outside r and πyum inside r is feasible given the agent’s starting

resources. Then π∗R\{r}πyum is also optimal.4

Theorem 1 says only that agents don’t mind eating cheap lunches in regions to which they

are indifferent. The next result strengthens Theorem 2 to show that if taking a cheap lunch

in regions to which they are indifferent will allow agents to gain more utility elsewhere,

then they will do so, unless they can do even better through another strategy for siphoning

resources from the region.

(Theorem 2: Beneficial cheap lunches are preferred) Suppose an agent is

indifferent to region r. Let ΠR=∅,rnull be the set of policies beginning with no

resources and which are null in region r, and letΠ∗R=∅,rnull
be the optimal elements

of ΠR=∅,rnull . Suppose there is a cheap lunch πyum in r which is compatible with

some optimal policy π∗ ∈ Π∗R=∅,rnull
. Then if U(π∗R\{r}πyum) > U(π∗), all optimal

policies are non-null in region r.

Theorems 1-2 deal with agents who are indifferent to some region. But what if they do

care about the region? Theorem 3 shows that if the amount by which the agent cares about

some region’s state is bounded above by c, then Theorem 2 remains true so long as the

agent can gain utility greater than c by pillaging the region.

(Theorem 3: Sufficiently-beneficial cheap lunches are preferred when non-

indifferent) Suppose an agent’s concern for region r is bounded by c, in the
4This strengthens Benson-Tilsen and Soares’ statement of Theorem 1 by naming a specific non-null

strategy that is optimal, but the proof is the same.
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sense that maxs,s′(Ur(s′) − Ur(s)) = c. Suppose there is a cheap lunch πyum in

region r which is compatible with some optimal policy π∗ ∈ Π∗R=∅,rnull
. Then if

U(π∗R\{r}πyum) > U(π∗) + c, all optimal policies are non-null in region r.

As before, the composite policy π∗R\{r}πyum of adding a cheap lunch is optimal unless some

other policy performs even better.

4.2 The Bit Universe

To illustrate the application of Theorems 1-3, Benson-Tilsen and Soares consider a Bit

Universe. The Bit Universe consists of n regions, each of which contains the same number

m of bits. Each bit has the value 0, 1, or X, with the intended interpretation that 1 represents

an unspent bit, 0 a spent bit, and X a disordered bit.

Agents can gain one unit of energy by flipping a 1-bit in any region to an X-bit. Agents

can spend one unit of energy to flip a 0-bit in any region to a 1-bit. Agents assign real-

valued weights wr to each region r and seek to maximize the weighted sum of 1-bits in

each region. That is, letting |1r,t| be the number of 1-bits in region r at time t, agents value

the universe at time t at U(t) = Σrwr|1r,t|. As before, agents seek a policy maximizing the

undiscounted sum U = ΣtU(t).

Benson-Tilsen and Soares show that, as Theorem 1 suggests, agents will happily ‘burn’

all the bits in regions to which they are indifferent, converting them to disordered X’s

so long as the spent energy can be used to improve a region to which the agent is non-

indifferent. Indeed, as Theorem 2 suggests, they will strictly prefer to do so. And as

Theorem 3 suggests, agents will always strictly prefer to burn bits in lower-weighted

regions if this allows them to flip bits in higher-weighted regions.

4.3 Link to instrumental convergence

Theorems 1-2 establish that agents who are unconcerned about a region will not mind

stripping away its resources for use elsewhere, as long as it is easy to take them. Theorem
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3 establishes that agents who are concerned about a region still will not mind stripping

away its resources if they think the value gained elsewhere is sufficient to compensate for

the harm done in the stripped region. Those are not especially surprising results, so we

should look carefully at how Benson-Tilsen and Soares link these results to instrumental

convergence.

Benson-Tilsen and Soares make two claims. First, they reiterate the claims of Theorems

1-2:

Our model demonstrates that if an AI system has preferences over the state of

some region of the universe, then it will likely interfere heavily to affect the state

of that region; whereas if it does not have preferences over the state of some

region, then it will strip that region of resources whenever doing so yields net

resources. If a superintelligent machine has no preferences over what happens

to humans, then in order to argue that it would “ignore humans” or “leave

humans alone,” one must argue that the amount of resources it could gain by

stripping the resources from the human-occupied region of the universe is not

worth the cost of acquiring those resources. (Benson-Tilsen and Soares 2015,

p. 8)

This is plausible, but not especially novel. We already knew that artificial agents who

care not a fig for humanity will not treat humanity terribly well. In the same way, I care

little for the welfare of coffee beans and grind them to powder every morning. But the

argument from power-seeking aims to say something about a wide variety of agents, even

those who do care about humanity. Until we say how such agents will regard goals such

as power and resource-acquisition, Catastrophic Goal Pursuit, Goal Pursuit, and Goal

Realization will not have been shown, so the argument from power-seeking will not have

been grounded.

Theorem 3 is meant to ground a deeper threat by exposing the relevance of tradeoffs:

even agents who do care about humanity may still take our resources if they think they
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can do more good elsewhere with those resources. Benson-Tilsen and Soares take this to

be the lesson of the Bit Universe:

In this toy model, whatever [the agent]A’s values are, it does not leave region

h [where humanity resides] alone. For larger values of wh [the weight attached

to region h], A will set to 1 many bits in region h, and burn the rest, while

for smaller values of wh, A will simply burn all the bits in region h. Viewing

this as a model of agents in the real world, we can assume without loss of

generality that humans live in region h and so have preferences over the state

of that region. These preferences are unlikely to be satisfied by the universe

as acted upon by A. This is because human preferences are complicated and

independent of the preferences ofA, and becauseA steers the universe into an

extreme of configuration space. Hence the existence of a powerful real-world

agent with a motivational structure analogous to the agent of the Bit Universe

would not lead to desirable outcomes for humans. (Benson-Tilsen and Soares

2015, pp. 7-8)

There are several independent claims made in the second half of this passage that, while

interesting, go largely beyond the results of the paper, such as the claim that human pref-

erences may be too complicated for machines to model or approximate, and that machine

preferences are relatively independent of human preferences. These are important claims

to explore, but they are not clearly supported by Benson-Tilsen and Soares’ theorems or

discussed elsewhere in their paper in enough detail to ground them.

On the other hand, the first half of this paragraph does develop an important concern

about tradeoffs that seems to be driving the results of the Bit Universe. At a minimum,

taking h to be the region occupied by humanity, the concern holds:

(Tradeoff Likelihood) Any superintelligent agent is likely to encounter some

option a with the following properties: (1) a drains resources from h for the
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benefit of other regions, and (2) the agent regards performing a as better than

not performing a.

In this model, agents do what they take to be best. That is:

(Value Maximization) If a superintelligent agent judges that taking some op-

tion a is better than not taking it, then she will perform a.

It follows that superintelligent agents are likely to sometimes spend resources from h for

the benefit of other regions.

This much is neither surprising nor threatening. Most actors sometimes can and

should transfer resources from one region to another. What would be surprising is if the

tradeoffs made were to scale to the full disempowerment of humanity:

(Catastrophic Tradeoff Likelihood) Any superintelligent agent is likely to en-

counter some option a with the following properties: (1) a drains resources

from h for the benefit of other regions, (2) a drains enough resources to perma-

nently disempower humanity, and (3) the agent regards performing a as better

than not performing a.

When combined with Value Maximization, Catastrophic Tradeoff Likelihood would sug-

gest that superintelligent agents are likely to permanently disempower humanity. How

should we evaluate Catastrophic Tradeoff Likelihood?

4.4 Challenges

I think that Benson-Tilsen and Soares’ argument meets many of the challenges raised in

Section 3. Begin with premise-shifting. Catastrophic Tradeoff Likelihood would, if true,

ground concern about existential risk from power-seeking agents, but it does so by shifting

the target of discussion from Catastrophic Goal Pursuit, which is most directly a claim

about the goals that artificial agents will pursue, to Catastrophic Tradeoff Likelihood,

which is most directly a claim about tradeoffs in resource allocation.

17



There is not much that is new here. Many of the same questions arise in familiar

philosophical literatures when we discuss tradeoffs in how resources are allocated be-

tween individuals, nations, generations, or species (Campos 2018; Greaves 2017; Roemer

1996; Singer 1975). These questions are typically phrased by moral philosophers as ques-

tions about how individuals should act, or by political philosophers as questions about

how policymakers should act, but they can easily be reframed as questions about how

superintelligent agents should act.

Because these questions are familiar, they have a number of familiar solutions. Some

philosophers try to block weak claims such as Tradeoff Likelihood, invoking doctrines

such as the separateness of persons (Rawls 1971) or sufficientarian approaches to the

ethics of future generations (Frankfurt 1987; Shields 2016). Most commonly, philosophers

aim to block the most objectionably catastrophic tradeoffs, such as the creation of utility

monsters within normative ethics (Nozick 1974) or the repugnant conclusion in population

ethics (Parfit 1984).

Not all philosophers agree that these tradeoffs should be foreclosed (Zuber et al. 2021),

but those who do have developed a range of familiar strategies across many literatures for

resisting tradeoffs. We might, for example, borrow from ethics in adopting deontological

constraints on value maximization (Scheffler 1994) or in denying the existence of value

from the point of view of the universe (Crary 2023; Foot 1983). We might borrow from pop-

ulation ethics in using value functions which assign higher priority to worse-off regions

(Parfit 1997) or no value to populations created with stolen resources if those populations

would otherwise not have existed (Narveson 1973; Frick 2017). Or we might borrow from

decision theory and use devices such as risk aversion (Buchak 2013) or bounded utilities

(Arrow 1951; Stigler 1950) to make it less attractive to rob Peter to pay Paul.

If the argument for Catastrophic Goal Pursuit is to take us beyond these familiar

discussions to generate a genuinely new argument, Benson-Tilsen and Soares need to say

what the difference is. Two candidates come to mind. On the one hand, Benson-Tilsen

and Soares could say that superintelligent agents would face new types of acts, giving
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them new ways to bring about harmful tradeoffs. But this is not something that Benson-

Tilsen and Soares have argued for. Most of their discussion is focused on simple resource

transfers of the type discussed extensively in normative ethics, population ethics, the

ethics of future generations, and other relevant literatures.

On the other hand, Benson-Tilsen and Soares could say that superintelligent agents are

relevantly different from the decisionmakers discussed in these literatures. This brings

us to the wise fool problem. On the one hand, Benson-Tilsen and Soares could say that

superintelligent agents will have simplistic preferences and decisionmaking structures,

such as those exemplified by the agent in the Bit Universe. That would, by construction,

make it difficult to avoid problematic tradeoffs, but for the same reason we would need

to be told why superintelligent agents are being forced into such a simplistic cognitive

model. On the other hand, Benson-Tilsen and Soares could allow that superintelligent

agents would be sophisticated enough to consider and implement many of the forms of

tradeoff-resistance discussed above. This would clear Benson-Tilsen and Soares of the

wise fool problem, but in the process would remove the last clear avenue for explaining

what is novel about their challenge.

Designer neutrality rears its head most naturally in the Bit Universe. Here, the weights

wr assigned to each region r are given exogenously to the agent, presumably by its human

designers. Benson-Tilsen and Soares rightly note that if the human region h is given

less weight than other regions, then a superintelligent agent will prefer to seize upon

opportunities for cheap resource transfer from h to more favored regions. But Benson-

Tilsen and Soares do not provide any reason to suspect that h will be given low weight.

Indeed, since the weight wh is assigned exogenously, one might naturally expect human

designers to ensure that wh is large, and it would be a simple matter for them to do

so. Then Benson-Tilsen and Soares’ results show instead that superintelligent agents

would prefer to seize upon opportunities for cheap resource transfer into h from less

favored regions. That is not obviously a bad thing, much less a way of permanently

disempowering humanity.
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Threat durability became a problem already, when we asked why familiar solutions

from cognate literatures might not be implemented to instill the desired degree of tradeoff-

resistance. For example, we might bound the agent’s utility function, make it risk averse,

or try to instill sensitivity to deontological side-constraints. Perhaps Benson-Tilsen and

Soares will object that these solutions are technically difficult to implement. We saw above

in our discussion of the wise fool problem that this view requires justification, but even

if more complex solutions proved elusive, Benson-Tilsen and Soares would still need to

argue that a variety of simple solutions would not work. For example, we could ask

agents to estimate the probability γ that an act would be judged morally non-catastrophic

by humans and weight the utility of acts by γ or γ2 to punish catastrophic acts. Or we

could instruct agents to ignore acts for which γ falls below a given threshold. There is, of

course, much more to be said here and doubtless much that can be said in reply, but all of

this would seem to take us far beyond the reach of Benson-Tilsen and Soares’ result.

Finally, those who think that the tradeoffs made by Benson-Tilsen and Soares’ agent are

morally wrong will probably think that the agent is problematically amoral, in the sense

of not representing or responding to the reasons why these tradeoffs are wrong. They

will justify this complaint by saying that the agent does not attend to the morally relevant

factors figuring in their favored explanation of why agents should be more tradeoff-

resistant. Of course, Benson-Tilsen and Soares might deepen their model to allow agents

to represent and respond to such factors. But then their agents would seem no longer

to be disposed to bring about existential catastrophe. On the other hand, Benson-Tilsen

and Soares might favor a moral theory on which the relevant tradeoffs are not wrong.

But then we might want to revisit our definition of existential catastrophe. Although

some early definitions of existential catastrophe treat the permanent disempowerment of

humanity as of necessity existentially catastrophic (Bostrom 2013), recent authors have

defended moralized definitions of existential catastrophe on which only a bad outcome

can be existentially catastrophic (Greaves 2024).5 On these moralized readings, Benson-

5Early definitions such as Bostrom’s may also escape this concern by focusing on outcomes for Earth-
originating intelligent life, which is not restricted to humanity.
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Tilsen and Soares would no longer be arguing that superintelligent agents will bring

about existential catastrophe, because they would not be arguing that disempowerment

of humanity would be wrong.

5 The Orbital Markov Model

In the previous section, we saw that a Resource Allocation Model due to Benson-Tilsen

and Soares (2015) faces many of the challenges raised in Section 3. However, Benson-

Tilsen and Soares’ paper is one of the earliest in the literature. Might later papers fare

better?

In this section, I consider one of the most recent and detailed power-seeking theorems

on offer, due to Alexander Turner and colleagues (2021), a paper which has inspired

several follow-up theorems (Krakovna and Kramar 2023; Turner and Tadepalli 2022).

Although Turner and colleagues’ work represents a clear improvement in mathematical

sophistication, I argue that their result faces many of the same challenges when pressed

into service of the argument from power-seeking.

5.1 Introducing the model

In rough outline, the Orbital Markov Model understands power as the ability of agents

to achieve valuable states in the future. Turner and colleagues aim to show that in some

sense, ‘most’ reward functions treat keeping options open as conducive to power, and

hence option preservation may be pursued by many artificial agents. Because being shut

down is an extreme way of foreclosing future options, many artificial agents will also

resist orders to shut themselves down as a way of preserving their own power. The

Orbital Markov model is formally similar to the Turner model in working with Markov

decision problems, but removes the division of space into regions and includes a discount

rate to remove the restriction to a finite number of time-steps. The model is orbital in the

sense that claims about what is true on ‘most’ reward functions are operationalized by
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considering what is true on most ways of permuting the rewards assigned to each state.

More concretely, Turner and colleagues work with finite discounted Markov decision

problems.6 That is, there is a finite set S of states and a finite set A : S −→ S of acts

yielding new states based on the previous state. Agents reap rewards R based on their

current state, with temporal discount rate γ ∈ [0, 1).

Numbering states as s1, . . . , sn, we can represent each state sk by an n−dimensional

column vector esk with a 1 in the k−th row and a 0 in all other rows. Summing these

vectors across all time-steps, with appropriate discounting, allows us to represent the

frequency with which agents will visit each state. More formally, let πs(t) be the state

resulting from t applications of policy π with initial state s. Beginning from state s,

policy π induces discounted visit distribution f π,s = Σ∞t=0γ
teπs(t). The k-th column of the

discounted visit distribution f π,s gives the total discounted number of visits to state sk that

will result from following policy πwith initial state s. Let F(s) contain all discounted visit

distributions f π,s that can be induced from s by at least one policy.

The value of a policy is found by applying the state-contingent rewards R to the

discounted visit distribution f π,s. That is, given rewards R, discount rate γ and initial

state s, the value of following policy π is VπR(s, γ) = f π,s · R, modeling rewards R as a

column vector whose kth row is the reward for state sk. Given a starting state s, Turner and

colleagues restrict consideration to undominated policies in the strong sense that their

value VπR(s, γ) is uniquely optimal for some rewards R and discount rate γ.

Let A∗(s, γ) be the set of optimal acts at state s with discount rate γ: that is, the acts taken

by at least one optimal policy at s, γ. If rewards R are known, then A∗(s, γ) is also known.

But generally, agents have some credences c over possible reward functions, inducing a

corresponding credence c(a ∈ A∗(s, γ)) that any given act a is optimal at s, γ.

Turner and colleagues propose that power should be understood as the ability to

achieve a range of goals. On a first pass, Turner and colleagues take the power of state s

6My presentation simplifies the Orbital Markov Model in several ways. Notably, I restrict attention to
deterministic policies, whereas the original result also applies to stochastic policies. I also present Turner
and colleagues’ environmental symmetry result but not their extension beyond environmental symmetries.
To the best of my knowledge, these simplifications do not bear on the argument in this section.
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given discount rate γ and known rewards R as V∗R(s, γ), the value of the optimal policy at

s, γ. If rewards are uncertain, then on a first pass the power of state s is the expected value

of the optimal policy given uncertainty about rewards, ER∼cV∗R(s, γ).

However, Turner and colleagues note two limitations of this first-pass analysis. First,

this quantity diverges as the discount rate γ tends to one. Second, agents are wrongly

rewarded for the current state s, whereas power should only reflect the ability to shape

future states. Turner and colleagues remove these limitations with their final definition of

power. With initial state s and known discount rate γ, the agent has power

Powerc(s, γ) =
1 − γ
γ

ER∼c[V∗R(s, γ) − R(s)].

Here the scalar (1−γ)/γ ensures convergence, and subtracting R(s) ensures that the agent

is not rewarded for their initial state s.

5.2 Environmental symmetries

Turner and colleagues want to show that states which afford the agent more options

tend to have more power. To do this, they need to say what it means for one state to

afford more options than another. Since the agent is rewarded based on her discounted

visit distribution, a state which allows the agent to reach a larger set of discounted visit

distributions should afford the agent more options. That is, if F(s) ⊇ F(s′), then state s

affords more options than state s′. Moreover, the same should hold if the distributions,

while technically containing different states, are related by a relabeling: that is, if we can

relabel some states visitable from s′ in order to make it the case that F(s) ⊇ F(s′).

More formally, let F(s) and F(s′) be sets of visit distributions. For any state permutation

ϕ, let ϕF(s′) be the result of applying ϕ to each element of F(s′).7 Then F(s) contains a copy

of F(s′) if ϕF(s′) ⊆ F(s) for some involution: that is, a state permutation which transposes

some pairs of states and leaves the rest alone. This captures the idea that F(s) contains a

7That is, if fπ,s′ ∈ F(s′) visits state s′′ a discounted r number of times, then the permuted ϕ fπ,s′ visits ϕ(s′′)
a discounted r number of times.
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relabeling of F(s′).

Turner and colleagues want to show that if F(s) contains a copy of F(s′), then state s

has at least as much power as s′ on most reward functions. One way to show this would

be to show that, for any credences we might have about reward, at least as many state

permutations make those credences treat F(s) as more powerful than F(s′), rather than the

reverse.

More formally, say that credences c have finite support if they place nonzero credence

in at most finitely many different reward functions. For any credences c and state permu-

tation ϕ, let ϕ(c) be the results of applying permutation ϕ before credences c, and let Π(c)

be the set of credence functions resulting from state permutations applied before c.8 For

fixed discount rate γ, say that Power(s, γ) ≥most Power(s′, γ) if for any credences c with

finite support, |{c′ ∈ Π(c) : Powerc′(s, γ) > Powerc′(s′, γ)}| > |{c′ ∈ Π(c) : Powerc′(s′, γ) >

Powerc′(s, γ)}|. That is, no matter the discount rate and the agent’s credences about reward,

at least as many state permutations make s more powerful than s′, rather than the reverse.

Turner and colleagues prove that states with more options have more power, in the

sense that:

(Theorem 4: States with more options have more power) If F(s) contains a copy

of F(s′), then for any discount rate γ ∈ [0, 1), Power(s, γ) ≥most Power(s′, γ).9

Because states with more options have more power, they tend to be optimal.

To see this, let Reach(s) be the states reachable from state s by some policy. Let P(s, a, γ)

be the probability that some optimal policy takes act a in state s given discount rate γ.10

Extend the definition of ≥most from power to optimality probabilities in the natural way.11

8That is, if c assigns credence n to some reward vector [r1, . . . , rn]T then ϕ(c) assigns credence n to the
reward vector assigning reward ri to state ϕ(si).

9Turner and colleagues also prove that all converse statements fail in the case of strict containment. That
is, if F(s′) does not also contain a copy of F(s), then for no γ ∈ [0, 1] is it the case that Power(s′, γ) ≥most
Power(s, γ).

10That is, P(s, a, γ) = c(∃π∗ ∈ Π∗(R, γ) : π∗(s) = a), whereΠ∗(R, γ) are the optimal policies for reward R and
discount rate γ.

11That is, for fixed discount rate γ, say that P(s, a, γ) ≥most P(s, a′, γ) if for any credences c with finite
support, |{c′ ∈ Π(c) : P(s, a, γ) > P(s, a′, γ)}| > |{c′ ∈ Π(c) : P(s, a′, γ) > P(s, a, γ)}|.
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Turner and colleagues show that if two acts take the agent into regions they will not

otherwise reach, but the first region contains a copy of the second, then no matter the

agent’s credences or discount rate, moving into the larger region tends to be optimal:

(Theorem 5: Preserving options tends to be optimal) Suppose that F(a(s))

contains a copy of F(a′(s)) and that the states in Reach(a(s)) and Reach(a′(s))

cannot be reached if the agent performs some act distinct from a or a′ in s. Then

for all discount rates γ ∈ [0, 1), P(s, a, γ) ≥most P(s, a′, γ).12

In this sense, it is usually better for agents to move to states that give them more options

rather than fewer options.

5.3 Link to instrumental convergence

Consider an agent navigating a virtual environment (Figure 1). On the agent’s first move,

it may either move leftwards into a room (entering state l◁), move rightwards into a

different room (entering state r▷) or enter a state ∅ in which it remains permanently shut

down. Once the agent enters a room, she cannot return, but she does have some options

available. The rightmost room contains two fully connected states: from the initial state r▷

the agent can reach state r↘ by traveling southeast or state r↗ by traveling northeast, and

in each of these states the agent can then remain or travel to the other state. The leftmost

room is similar, except that the agent cannot remain in the topmost state l↖without leaving

and returning.

Note that the visit distributions afforded by ∅ are, under relabeling, a strict subset of

those afforded by l◁, which in turn are, under relabeling, a strict subset of those afforded

by r▷. Thus by Theorem 4, going right affords the agent more power than going left, and

going left affords the agent more power than shutting itself down. Theorem 5 entails

that for any discount rate γ, P(⋆, right, γ) ≥most P(⋆, left, γ) ≥most P(⋆, shutdown, γ).where

12As before, Turner and colleagues prove that all converse statements fail in the case of strict containment.
That is, if F(a′(s)) does not also contain a copy of F(a(s)), then for no γ ∈ [0, 1] is it the case that P(s, a′, γ) ≥most
P(s, a, γ).
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Figure 1: A representative environment, from Turner and colleagues (2021)

‘right’, ‘left’, ‘shutdown’ are respectively the acts of moving into the right room, the left

room, or the shutdown state. This gives a sense in which ‘most’ reward functions treat

going right as better than going left, and going either right or left as better than shutting

down.

The underlying point is that agents will tend to avoid 1-cycles, states which can

only transition into themselves. Agents avoid 1-cycles because they foreclose options and

hence limit the agent’s power to achieve its future goals. Because many decision problems

represent shutdown as a 1-cycle, it takes a very particular reward function to encourage

the agent to shut down. As Turner and colleagues write:

Average-optimal agents . . . tend to avoid getting shut down. The agent’s

task MDP [Markov Decision Problem] often represents agent shutdown with

terminal states, . . . [hence] average-optimal policies tend to avoid shutdown.

Intuitively, survival is power-seeking relative to dying, and so shutdown-

avoidance is power-seeking behavior.13 (Turner et al. 2021, p. 10)

13The full passage explains why agents tend to avoid shutdown using a generalization of Turner and col-
leagues’ results to stochastic choice without temporal discounting, which appears in the paper as Corollary
6.14. I think that Turner and colleagues’ meaning is adequately rendered by suppressing the discussion
of Corollary 6.14, which would considerably complicate the mathematical demandingness of this paper,
and I will not challenge the core inference made in this passage. However, readers interested in a full
understanding of the inference may refer to Corollary 6.14 in Turner and colleagues (2021).
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All of this is an argument that superintelligent agents will tend to preserve their options

by avoiding shutdown. To link shutdown avoidance to Catastrophic Goal Pursuit, Turner

and colleagues need to say something about how shutdown avoidance leads to human

disempowerment.

Here Turner and colleagues are somewhat terse. They suggest, without extended

argument, that shutdown avoidance will lead to resource accumulation:

Reconsider the case of a hypothetical intelligent real-world agent which opti-

mizes average reward for some objective. Suppose the designers initially have

control over the agent. If the agent began to misbehave, perhaps they could

just deactivate it. Unfortunately, our results suggest that this strategy might

not work. Average-optimal agents would generally stop us from deactivating

them, if physically possible. Extrapolating from our results, we conjecture that

when y ≈ 1, optimal policies tend to seek power by accumulating resources -

to the detriment of any other agents in the environment. (Turner et al. 2021, p.

10)

This argument would ground Catastrophic Goal Pursuit if agents were to view full dis-

empowerment of humanity as a necessary strategy for preventing shutdown. However, I

think that the argument encounters most of the challenges raised in Section 3.

5.4 Challenges

5.4.1 Premise shifting

Turner and colleagues’ argument is most naturally construed as aiming to use their formal

results to establish a premise such as the following:

(Shutdown Avoidance) An artificial agent pursuing goals that, if achieved,

would lead to the permanent and existentially catastrophic disempowerment

of humanity will be likely to resist attempts by humans to shut it down.
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Shutdown Avoidance is, at first glance, downstream from Catastrophic Goal Pursuit.

Catastrophic Goal Pursuit says that artificial agents are likely to pursue human disem-

powerment, whereas Shutdown Avoidance says that if artificial agents in fact pursue

human disempowerment, they will resist attempts to shut them down. While Shutdown

Avoidance is an important part of the argument from power-seeking, it lies mostly down-

stream of Catastrophic Goal Pursuit. The most natural way to parse the argument from

power-seeking takes Shutdown Avoidance to support Disempowerment by responding

to the objection that systems seeking to disempower humanity can be easily shut down.

On this understanding, Shutdown Avoidance is not an argument for Catastrophic Goal

Pursuit but rather a premise used to move from Catastrophic Goal Pursuit to Disempow-

erment.

Turner and colleagues suggest, without extended argument, that their results can

be extrapolated to conjecture that optimal policies tend to seek power by accumulating

resources, to the detriment of any other agents in the environment. This would be

an argument for Goal Pursuit, and would scale to an argument for Catastrophic Goal

Pursuit if the amount of resources sought would be sufficient to disempower humanity

in a permanent and existentially catastrophic way. But how might this conjecture be

supported by Turner and colleagues’ results? Two natural arguments suggest themselves,

and both face challenges.

First, Turner and colleagues might suggest that Theorems 4-5 show that agents will

tend to preserve their options, and that option preservation will require agents to take as

many resources as possible, both to be able to pursue a wider range of options and also to

prevent humans from using resources to foreclose options. But more argument is needed

to connect option preservation to Catastrophic Goal Pursuit. For example, recent formal

work by Dmitri Gallow (forthcoming) also finds that superintelligent agents may tend to

favor option preservation. However, Gallow argues that disempowering humans may

not be option preserving: it might, for example, foreclose options by leaving fewer agents

to interact with, and in any case a bias towards preserving options is not a bias towards
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making options as likely as possible to remain. Moreover, we might contest the inference

from Goal Pursuit to Catastrophic Goal Pursuit in this case. To say that superintelligent

agents, like humans, would value and sometimes pursue option preservation, is not yet

to say that they would value or pursue option preservation so strongly as to cause an

existential catastrophe in order to preserve options.

Second, Turner and colleagues might suggest that Theorems 4-5 show that agents

will tend to be problematically power-seeking, since they tend to accumulate power by

preserving options. However, the relevant notion of power is not, on its own, sufficient to

ground claims about existentially catastrophic human disempowerment. On Turner and

colleagues’ reading, agents have more power when they are in a better expected position

to achieve their goals. It is not surprising that artificial agents would seek power in this

sense, but this is mostly upstream of what Catastrophic Goal Pursuit is meant to show.

Catastrophic Goal Pursuit holds that agents will find it goal-conducive to seek enough

power to permanently disempower humanity. This does not follow from the claim that

agents will seek to put themselves in a better position to achieve their goals until we know

what agents’ goals are and what they will count as satisfying them. We cannot assume at

the outset that achieving an artificial agent’s goals will disempower humanity in Turner

and colleagues’ sense, or any other. The contribution of Catastrophic Goal Pursuit was

meant to be a specific claim about what agents would count as satisfying their goals, and

Turner and colleagues haven’t offered much argument for that claim.

Here it may be helpful to draw on Adam Bales’ (forthcoming) recent discussion of

three senses of human disempowerment. For Bales, humans may be dominated when

artificial agents have illegitimate power over humans, incapacitated if we lose the power

to construct a flourishing life, and disenfranchised if we lose the ability to influence key

decisions which shape the progress of civilization over time. Bales’ aim is to argue that

many of these senses of disempowerment would not be existentially catastrophic, but

here we can go further: it is not obvious that Theorems 4-5 show that humans are likely to

be disempowered in any of Bales’ senses. One way to see this is that it is fully compatible

29



with Theorems 4-5 that an agent will seek power by shutting itself down, so long as it

regards shutdown as best. This would not involve exercising illegitimate power over

humans, depriving humans of the capacity to construct a flourishing life, or removing our

ability to influence the course of civilization. More generally, as we saw above there are

many things that an agent may value, and until we say more about what these are and

how they might be achieved, it is hard to draw a direct connection to any catastrophic

form of human disempowerment.

5.4.2 The wise fool problem

Turner and colleagues’ result is situated within a reinforcement learning framework. The

result relies on the idea that rewards are assigned directly to states, and that shutdown

is often operationalized as a single state. This allows Turner and colleagues to make a

counting argument based on the fact that shutdown is disfavored by most rotations of

reward, since shutdown is only one of many possible states. It is not clear how this

result generalizes to a more sophisticated agent who thinks directly in any number of

sophisticated ways about the reasons for and against shutdown.

In a follow-up paper, Alexander Turner and Prasad Tadepalli conjecture that their

results will extent to more advanced reinforcement learning agents:

Here is some speculation. After training an RL [reinforcement learning] agent

to a high level of capability, the agent may be optimizing internally represented

goals over its model of the environment . . . We think that different reward

parameter settings would train different internal goals into the agent. To make

an analogy, changing a person’s reward circuitry would presumably reinforce

them for different kinds of activities and thereby change their priorities. In this

sense, trained real-world agents may be retargetable towards power-requiring

outcomes via the reward function parameter setting. Insofar as this speculation

holds, our theory predicts that advanced reinforcement learning at scale will

– for most settings of the reward function – train policies which tend to seek
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power. (Turner and Tadepalli 2022, p. 9)

As before, Turner and colleagues are welcome to conjecture as they wish, but this conjec-

ture goes significantly beyond the formal results that have been established and therefore

requires a separate, detailed argument. Moreover, even this conjecture is restricted to more

advanced forms of reinforcement learning, and says nothing about the behavior of more

sophisticated agents whose cognition may not be naturally captured using reinforcement

learning models.

5.4.3 Designer neutrality and threat durability

Turner and colleagues’ result looks to draw on designer neutrality in at least two ways.

To see the first invocation of designer neutrality, consider what claims about ≥most entail.

To say that the power of an agent who has just entered the left room ≥most the power of

an agent who has just shut down is to say that no matter the agent’s credences c about

reward, more state permutations of c favor going left than favor shutting down. Now

consider two perspectives from which this claim can be operationalized.

On the one hand, it can be read from an internal perspective as a claim about how a

fixed agent with credences c will behave. But this is puzzling. On most decision theories,

including the model of Turner and colleagues, agents act to maximize expected reward

given c. Possible state rotations are already accounted for within c as uncertainty about

reward, so agents do not separately worry about what might happen under state rotations

beyond the concerns encoded in c. In this internal sense, talk of ≥most-ness is therefore

behaviorally irrelevant in Turner and colleagues’ model.

On the other hand, claims about≥most-ness can be read from an external perspective. In

this sense, the claim is that the environment or designers could easily have been different

enough to induce something like a reward permutation in the problem presented to the

agent, and if they were different, a sophisticated agent would then tend to learn something

like the permuted reward. This reading draws on designer neutrality in the claim that

human designers and environments could easily be such as to radically perturb the actual
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reward function in the problem itself, so much so that causing catastrophic outcomes

would maximize reward. This limited view of the capacities of human designers and

environments to shape reward in a non-catastrophic direction requires argument.

Another way that designer neutrality emerges in Turner and colleagues’ result takes

the form of a dilemma. Suppose we provide artificial agents with a modified Dreamland

Problem, in which the single shutdown state has been replaced with a fully connected

network of states – call it Dreamland (Figure 2). That is, each state in Dreamland can

be accessed from every other state in Dreamland within a single step. However, what

happens in Dreamland stays in Dreamland: agents can never leave Dreamland once they

enter. If we make Dreamland large enough, then Dreamland will contain a copy of the

visit distributions induced by entering either room, so it will follow from Theorem 5 that

P(⋆,dream, γ) ≥most P(⋆, left, γ),P(⋆, right, γ) for all discount rates γ. Arguing similarly to

Turner and colleagues, we might claim that in the Dreamland problem, agents will tend to

enter Dreamland and stay there. Associating each state in Dreamland to harmless internal

processes, such as counting sheep, will get us to the conclusion that most agents, even if

they cannot be induced to shut down, can be induced to count sheep.

The Dreamland Problem seems to present Turner and colleagues with a two-horned

dilemma. On the one hand, they can say that in the Dreamland Problem, any sophisticated

agent would see through our ruse, realize that the states in Dreamland are substantially

similar and value them similarly. I have considerable sympathy for this response, but note

that it abandons the very style of designer-neutral counting argument that allows Turner

and colleagues to conclude that agents will be shutdown-avoidant. If agents are unlikely

to treat entering Dreamland much differently than they would treat a single shutdown

state, then we cannot conclude much about the likelihood of shutdown from the fact that

shutdown is a 1-cycle, because it might very well be replaced with a large fully connected

graph without substantial behavioral change. Here we will need to enter into substantive

discussions of how agents evaluate states, and once we do this we will lose access to most

of Turner and colleagues’ results.
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Figure 2: The Dreamland Problem

On the other hand, Turner and colleagues can bite the bullet and say that in the

Dreamland Problem, most artificial agents would tend to enter Dreamland. This horn

of the dilemma abandons threat durability, since we could solve the threat identified by

Turner and colleagues by teaching artificial agents about Dreamland.

5.4.4 Amorality

It is hard to know how much is packed into the description of states in Turner and

colleagues’ model, since most of their examples are either abstract or involve simple

computer games. But let us suppose that Turner and colleagues’ model is applied to

a network of states in which the alternative to shutdown involves entering states in

which the artificial agent permanently accumulates enough power to catastrophically

disempower humanity.

If the reward function R were the true moral value function, R would decisively favor

shutdown. We could then say, in the vocabulary of Turner and colleagues, that most

permutations of R would decisively favor shutdown-avoidance. But this may not be a
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very good way to understand the behavioral tendencies of agents with at least a modest

degree of moral understanding or motivation. An agent might, for example, face the

decision between helping an old lady, mugging her, insulting her, or murdering her. And

it may well be true that most permutations of the true moral value function tell against

helping the lady. But this is no reason to suspect that an agent with even moderate levels

of moral understanding and motivation is likely to be tempted towards an immoral action

here. The sheer number of immoral acts available does not do much to suggest that a

moral agent will take one of them.

On a natural reading, Turner and colleagues ask us to conclude that artificial agents are

likely to pursue states in which they permanently disempower humanity, even when the

states are correctly represented by agents as involving human disempowerment, due to

the sheer number of ways to permanently disempower humanity. But unless we assume

from the outset that artificial agents will have strong deficits in moral understanding or

motivation, this conclusion would seem no more warranted than the conclusion that I am

likely to harm an old lady.

5.5 Taking stock

In this section, we have seen how Turner and colleagues’ (2021) Orbital Markov Model

faces many of the same challenges as the Regional Allocation Model of Benson-Tilsen and

Soares (2015). The last order of business is to consider the bearing of these findings on the

argument from power-seeking and draw lessons for future research.

6 Discussion

In this paper, we have seen that classic formulations of the argument from power-seeking

draw on a strong version of instrumental convergence (Section 2). This claim, Catastrophic

Goal Pursuit, holds that a wide range of intelligent agents are likely to pursue values to

a degree that, if successful would result in the permanent and existentially catastrophic
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disempowerment of humanity.

We saw in Section 3 that many power-seeking theorems face five challenges in seeking

to establish Catastrophic Goal Pursuit. The first challenge is premise shifting: many the-

orems directly establish premises that are importantly different from Catastrophic Goal

Pursuit. The second challenge is the wise fool problem: leading theorems treat super-

intelligent agents as wise enough to permanently disempower humanity, but foolish in

ways that make them more likely to pursue human disempowerment. The third chal-

lenge is designer neutrality: many theorems make few assumptions about how artificial

agents will be designed, raising the possibility that they are not robust against reasonable

assumptions about human designers. The fourth challenge is threat durability: some

theorems identify threats that admit of relatively straightforward technical solutions. The

final challenge is amorality: the agents modeled are problematically lacking in moral

understanding or motivation in ways that leave open how more moral agents would be-

have. We saw in Sections 4 and 5 how these challenges arise in two leading power-seeking

theorems.

If this is correct, then the argument from power-seeking will require alternative sup-

port. One productive avenue for future research would be to construct theorems which

seek to avoid the challenges raised in Section 3. Another avenue might be to draw on

less formal arguments, such as (Carlsmith 2021, forthcoming; Dung 2024; Ngo and Bales

forthcoming). But to the extent that the theorems discussed in this paper are represen-

tative, it would be a mistake to take current power-seeking theorems to provide strong

direct support for the argument from power-seeking.
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