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Many of the dangers we face

indeed arise from science and

technology—but, more frequently,

because we have become powerful

without becoming commensurately

wise. The world-altering powers

that technology has delivered into

our hands now require a degree of

consideration and foresight that

has never before been asked of us.

Carl Sagan (1994)

1 Introduction

Since the dawn of the nuclear age, humanity has come to realize that technological

progress, while largely beneficial to the human condition, may also pose significant risks.

Several reports (Beckstead et al., 2014; Farquhar et al., 2017; Ord, 2020) have identified

these risks and concluded that they pose the greatest threats to long-term human poten-

tial—more so than any other natural risks. Bostrom (2019) makes an analogy to drawing

balls out of a giant urn. Though they have mostly been favorable in the past, we will

inevitably make a draw that risks destroying “the civilization that invents it.”1

Recent events have reignited concern over risky biological studies into bio-weapons,

synthetic biology, and in particular gain-of-function experiments. While natural biolog-

ical risks have been responsible for the greatest death tolls in human history, misguided

or accidental use of modern advancements in biotechnology have the potential to dwarf

these natural death tolls (Millett and Snyder-Beattie, 2017; Nelson, 2019). Another po-

tentially catastrophic technology, if advanced before we become “commensurately wise,”

is artificial intelligence. Experts have estimated that high-level machine intelligence will

emerge within the next few decades and that there is a one in three chance that such de-

velopment turns out to be catastrophic for humanity (Müller and Bostrom, 2016). Other

risks, such as those from geoengineering (Farquhar et al., 2017) and nuclear technology,2

may come as a consequence of our attempt to mitigate pressing climate issues without

sufficient knowledge and deliberation.

This paper is concerned with these technologically-induced anthropogenic risks. How

do we navigate such risks as a society in the presence of intergenerational conflict? In

1Bostrom calls this the “vulnerable world hypothesis.”
2Even without its potential for catastrophe at the global scale, nuclear power has fallen out of favor

in recent years, following the Fukushima disaster in 2011, the latest of the world’s major nuclear-power
disasters (Kormann, 2019).
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other words, how do we balance the potential long-term benefits of technological progress

against the risk of a global, perhaps irreversible, catastrophe when generations are short-

lived and act only in their own best interest?

To this end, I study a discrete-time game of strategic experimentation3 played by over-

lapping generations. The object of experimentation is a risky technology which provides

private benefits to the generation using it, but may entail catastrophic costs on other

generations. This payoff structure posits that motivation to pursue these risky technolo-

gies, at the end of the day, is for private intragenerational profit, while the potential

catastrophic impact is felt intergenerationally.

The alternative technology is safe with a known payoff. This can be interpreted as

a well-known, tried-and-tested technology, or as simply not using the risky technology.4

Each generation, while they are young, makes a decision on whether or not to use the

risky technology. If no catastrophe occurs, the generation may still incur costs, when

they are old, from the action of the future young.

The strategic aspect of the model is twofold. First, the assumption of private ben-

efits and public costs generates a negative payoff externality and brings the tragedy of

the commons feature to the game. Each generation wants to preempt experimentation

for private benefits, but does not want other generations to do so due to the public

costs. Decisions to experiment fail to internalize these public costs, leading to too much

experimentation in equilibrium.

Second, there is an informational externality between generations. Experimentation

on the risky technology does not only materially affect the current generations but also

provides information to later generations about its risk. Due to the informational as-

sumption that no news is good news, non-catastrophic experimentation by the current

generation invites further experimentation by later generations. This means that each

generation must be cautious when deciding whether or not to experiment, leading to less

experimentation than socially optimal. Although the material benefits go to the cur-

rent generation, experimentation is informationally useful since all generations gain from

better knowledge of the risks posed by a new technology.

I characterize the stationary Markov perfect equilibria of the model (Theorem 1) and

find that there is a continuum of equilibria in threshold strategy, whereby a risky technol-

ogy is used if and only if the current belief is below a threshold. Owing to the two types of

externalities, these equilibria exhibit both too much and too little experimentation com-

pared to a myopic equilibrium, where a decision is made based only on the current period.

In standard strategic experimentation models, under-experimentation typically ensues be-

cause agents free-ride on others’ information. In my model, this free-riding effect is offset

3See Bergemann and Välimäki (2008) for an overview of experimentation and bandit problems in
economics.

4The model accommodates such scenarios where the choice is not between two technologies, but
between using and not using a risky and potentially catastrophic technology for private gains.
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by the incentive to use the risky technology for private gain, causing a generation to pre-

empt experimentation before the next generation comes around. These opposing effects

lead to the existence of both over-experimentation and under-experimentation equilibria.

In Corollary 1, I show that the set of equilibria shrinks to the myopic equilibrium as the

social discount factor decreases. Analogous to the ability to sustain cooperation in an

infinitely-repeated prisoner’s dilemma, the possibility of intergenerational cooperation,

represented here by optimal experimentation, rests on the social discount rate.

I then characterize the optimal level of experimentation in Theorem 2 by solving the

discounted utilitarian social planner’s problem. I show that the value function is piecewise

linear and that the optimal policy is also a threshold policy. This means that if the initial

belief is below a certain threshold, the risky technology is used in perpetuity or until a

catastrophe occurs. If initial belief is above a threshold, then the safe technology is used

in perpetuity.

Both the equilibrium and the optimal policy exhibit threshold behavior. Assuming

that society has the ability to change initial belief and that this ability does not come

around very often, the equilibrium and the optimal policy dynamics echo Derek Parfit’s

comment that we are living at “the hinge of history.”5

To gauge how much generational agency hinders long-term ideal, I compare the equi-

librium and the optimal policy. Since there is a continuum of equilibria, there may exist

one that coincides with the optimal policy. This is a surprising, yet sensitive, result.

On one hand, it is remarkable that a sequence of selfish short-lived agents behaves in

accordance with an infinitely-lived social planner. On the other hand, other variations of

the model do not have this feature. The underlying forces need to counterbalance in just

the right way for selfish short-run incentives to align with the optimal long-run solution.

Theorem 3 asserts that the existence of an optimal equilibrium depends on the value

of the social discount rate. Specifically, an optimal equilibrium may not exist when the

discount rate is too high or too low. When the discount rate is too high, both the planner

and the generations are myopic in the sense that they care more about their immediate

futures. However, the immediate future for each generation is only their own lifetime,

while the immediate future of the planner takes into account another generation as well.

This is the payoff externality at work. When the discount rate is too low, incentives are

misaligned again, but this time, due to the informational externality. The generations

5Parfit (2011) writes:

We live during the hinge of history. Given the scientific and technological discoveries of the
last two centuries, the world has never changed as fast. We shall soon have even greater
powers to transform, not only our surroundings, but ourselves and our successors. If we
act wisely in the next few centuries, humanity will survive its most dangerous and decisive
period. Our descendants could, if necessary, go elsewhere, spreading through this galaxy.

For a book-length exposition of this idea tied to existential risk, see Ord (2020), who calls this hinge the
“precipice.”
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only care about their lifetime payoffs, while the planner also cares about the informational

benefit that results from using the risky technology.

To remedy the payoff externality, I propose a political process that lends some po-

litical power to the old. First, I investigate whether two living generations can work

together—mimicking an outcome of an equal power political process—to achieve a better

outcome. Unfortunately, equal power results in an even worse outcome since only under-

experimentation remains (Proposition 1). Tension between the young and the old seems

to be crucial for any hope of optimal experimentation. However, if the political power were

not equal, then there is scope for improvement (Proposition 2). Allowing for an optimal

share of power between the young and the old helps resolve the payoff externality—there

is no more over-experimentation for low discount factor. Under-experimentation for high

discount factor nevertheless persists (Theorem 4).

I then consider extensions to the baseline model. Proposition 3 considers the finite-

horizon version of the game and shows that only the myopic equilibrium survives, sup-

porting the folk theorem interpretation. In Proposition 4, I remove the payoff externality

and show that without it only under-experimentation arises in equilibrium. In addition,

I analyze a model where the damage from a catastrophe lasts for many periods. Proposi-

tion 5 characterizes both the equilibrium and the optimal policies for a model where the

catastrophe is irreversible. Lastly, I allow for risk aversion and show that it impacts the

results only insofar as it changes the magnitude of the parameters.

The paper is related to several strands of literature. It first belongs to the large lit-

erature on the economics of climate change and other catastrophes.6 Typically, climate

change and catastrophes are studied in economics with the Integrated Assessment Mod-

els (IAMs), in which a dynamic economy affects the climate through a damage function,

and vice versa. More consumption today means worse climate outcomes tomorrow, low-

ering tomorrow’s output and consumption (Nordhaus and Boyer, 2000; Nordhaus, 2008;

Hassler and Krusell, 2012; Golosov et al., 2014). The goal in these models is to find

an optimal path that balances consumption today with damages and consumption to-

morrow. Another approach to the economics of catastrophes is to ask how one should

distribute resources to mitigate these risks. Martin and Pindyck (2015, 2021) show that

simple cost-benefit analysis may not work when dealing with such large projects.

The approach taken here is quite different.7 I focus on technologically-induced anthro-

pogenic catastrophic risks and use the strategic experimentation framework as a basis.

Strategic experimentation, as pioneered by Bolton and Harris (1999) and Keller et al.

6For general audience discussion, see Nordhaus (2013); Wagner and Weitzman (2016); Pindyck (2021).
7The model cannot be used to crunch out numbers for policy recommendations like the IAMs, but

I believe it can nonetheless help understanding keys forces behind intergenerational conflicts. Alas, as
argued convincingly by Pindyck (2013, 2017), none of the IAMs can offer any realistic policy implications
either as there are too many unknowns, uncertainties, and ambiguities when it comes to the big and
long-term global problems.
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(2005), concerns a game-theoretic model of the trade-off between acquiring more infor-

mation and making the correct decision. The current paper investigates a discrete-time

version of Keller and Rady (2015), with two main modifications. First, the breakdown

costs are assumed to be incurred by all agents. This reflects the nature of catastrophic

risks. Second, the overlapping generation structure of the game is taken to better reflect

an intergenerational problem.

This leads to a final strand of literature: intergenerational games. The idea of inter-

generational gaming was proposed in the seminal discussion on intergenerational equity

by Phelps and Pollak (1968) in the context of optimal savings. The idea subsided, but

has been revived by Arrow’s “agent-relative ethics” (1999). Since then, some papers have

studied intergenerational games, typically in the climate context, where the conflict be-

tween generations comes from misaligned time perspectives (Karp and Tsur, 2011; Karp,

2017; Gerlagh and Liski, 2018b). The intergenerational conflict in my model comes in-

stead from the public nature of the costs and from the informational externality between

generations. The overlapping generational structure I adopt in this paper is inspired by

Acemoglu and Jackson (2015), where it was used to study the evolution of social norms.

The papers closest to mine combine the three strands of literature: catastrophes,

experimentation, and intergenerational payoff conflicts. Gerlagh and Liski (2018a) add

learning to a climate-economy model. The informational structure they consider is the

same as mine, but catastrophes occur exogenously and learning is passive—belief is up-

dated automatically in each period if no catastrophe occurs. Gerlagh and Liski (2018a)

solve for the optimal policy and the optimal carbon price before and after the catastrophe

occurs. Lastly, Liski and Salanié (2020) and Guillouet and Martimort (2020) incorpo-

rate active experimentation in a dynamic optimization problem, where experimentation

contributes to a stock which may trigger a catastrophe if it exceeds an unknown thresh-

old. The catastrophe, once triggered, impacts the society at a stochastic delay. Both

papers solve for the optimal policy before and after a catastrophe is triggered. There is

no strategic interaction in the former paper, while strategic interaction arises between

time-inconsistent selves in the latter. The setting of the current paper has no delays

nor time-consistencies. The focus of this paper is on the interactions between short-lived

sequential strategic generations and on how the outcomes compare to the long-run social

optimum.

The rest of the paper is organized as follows. I set up the model and introduce

pertinent definitions in Section 2. Section 3 characterizes the equilibrium of the intergen-

erational experimentation game. Section 4 solves for the social planner’s optimal solution

and discusses the relationship between the equilibrium and the optimal solutions. I ex-

tend the model to allow for a political process in Section 5. Section 6 considers other

extensions and variations. Section 7 concludes. All proofs are relegated to Appendix A,

while Appendix B analyzes a two-period version of the model with added features.
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time
0 1 2 3 4

Gen 3a3 ∈ {0, 1}

belief p3

Gen 2a2 ∈ {0, 1}

belief p2

Gen 1a1 ∈ {0, 1}

belief p1

Gen 0a0 ∈ {0, 1}

belief p0

Figure 1: Structure of Overlapping Generations.

2 The Model

This section sets up the model, the belief dynamics, and state pertinent definitions.

2.1 Set Up

Time is discrete and starts at t = 0. Players (also, generations) are indexed by the time

they are born, t ∈ {0, 1, . . . }. Each generation t lives for two periods, t and t+1. At time

t, when they are young, generation t makes a decision between two technologies: a safe

technology or a risky technology that comes with certain private benefits and uncertain

public costs. Denote at ∈ {0, 1} to be generation t’s usage of the risky technology

(experimentation) at time t. In the next period, at time t + 1, generation t does not

benefit from the technology, though they may suffer costs associated with a catastrophe

caused by the current young, generation t+1. Payoffs are discounted at the social discount

factor δ ∈ (0, 1). The structure of generations is depicted in Figure 1.

The net benefits of the safe technology8 is zero. On the other hand,9 the risky tech-

nology yields certain benefits s ∈ (0, 1) to the generation using it, but can potentially

cause a global catastrophe—a temporary public damage of 1.10 The possibility of this

8In the context of resource extraction, this is a technology that is known to be safe and clean, such as
solar and wind power. In the context of artificial intelligence research, one can interpret safe technology
simply as not advancing its capability until society learns more about its potential dangers.

9“Arm” is perhaps more appropriate than “hand” in the current context.
10Section 6.3 considers a model with long-term damage, lasting for many, and potentially all, future

generations. The assumptions that the safe technology has zero net benefits and that the catastrophic
damage is 1 are just normalizations. Suppose that the net benefits of the safe technology is b > 0, then we
can redefine the benefits of the risky technology as b+s. A larger damage, say of X > 1, can be captured
by redefining the benefits of the risky technology from s to s/X. Another strategically equivalent model
is the one where in each period the generation is faced with a choice between two costly technologies
to generate a fixed income: the safe technology costs s, while the risky technology costs 0 if there is no
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catastrophe depends on a persistent unknown state of the world, ω ∈ {G,B}. If the state

of the world is good, ω = G, a catastrophe never happens and the risky technology costs

0. If the state of the world is bad, ω = B, a catastrophe occurs with probability λtat,

where λt ∈ [0, 1] is the fragility of the technology.11 If λt is high, then the technology

gets out of control and a catastrophe occurs easily. If λt is low, then the technology is

less fragile.

For tractability, I assume in this paper that the fragility is constant over time, λt =

λ ∈ [0, 1] for all t.12 I further assume that λ > s, so a revelation that the state of the

world is bad ensures no further experimentation. This implies that once a catastrophe

occurs, all generations thereafter stick to the safe technology.

2.2 Beliefs

A common prior belief that the state of the world is bad is p0 = P(ω = B) ∈ (0, 1). Let

pt be the belief that the state of the world is bad at the beginning of period t, before any

decision is made. After generation t’s decision, either a catastrophe occurs or it does not.

If a catastrophe occurs, belief jumps to pt+1 = 1 and the game effectively ends.13 If not,

belief evolves according to Bayes’ rule:

pt+1(at+1) =
pt(1− λat)

pt(1− λat) + 1− pt
=

p0

∏t
s=0(1− λas)

p0

∏t
s=0(1− λas) + (1− p0)

, (2)

catastrophe and costs 1 otherwise. The objective there is then to minimize the costs, but it is essentially
the same model.

11This is the arrival rate of the Poisson process governing the catastrophic event. In the current con-
text, the fragility can be thought of as a function of two components that work in opposite directions.
First, how tolerant the technology is to alteration and experimentation before it goes wrong contributes
negatively to fragility. In this sense, the good state can be thought of as the situation when the tech-
nology is infinitely tolerant, making λt = 0 for all t. In the bad state of the world, it is conceivable that
the tolerance decreases overtime, perhaps due to increased hostile motivation and accumulated errors.
Second, the state of our collective wisdom also contributes to the fragility. It is conceivable that society
progresses in such a way that we become “commensurately wise” in handling powerful technologies, low-
ering λt over time. See discussion in Mann (2018) on the competing forces of technological advancement
and the environment.

12This is a common assumption in the literature as it lends stationarity to the dynamic problem:
given that an event has not occurred in the past, the probability that it will occur in the next instance
is constant. This assumption should be addressed in future research. One way to do this and capture
the tension between technological and moral progresses is to treat λt as a state variable that evolves
according to the players’ actions. Fragility can be thought of as a stock that depreciates when there is
no experimentation and edges closer to 1 with each generation’s experimentation:

λt+1 = γλt + (1− γ)[(1− at)s+ at], (1)

for some γ ∈ [0, 1] and λ0 = λ ∈ [0, 1], with λ > s. To get a glimpse at how the results change with
varying λt, Appendix B considers a two-period model with λ1 6= λ2.

13Since the state is revealed to be bad, all generations thereafter will only use the safe technology.
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where at+1 = (a0, . . . , at) is the history of actions chosen before period t+1. For notational

convenience denote, for k ≤ t+ 1,

at+1
k = (1, . . . , 1︸ ︷︷ ︸

k

, 0 . . . , 0︸ ︷︷ ︸
t+1−k

). (3)

to be a history with k uses of the risky technology followed by t+ 1− k uses of the safe

technology. For such histories, belief simplifies to

pt+1(at+1
k ) =

p0(1− λ)k

ρ(k, p0)
where ρ(k, p) ≡ p(1− λ)k + (1− p). (4)

We say that a belief p is optimistic when p is low because this indicates that the good

state of the world is more likely. On the other hand, we say that a belief is pessimistic if

p is high.

2.3 Strategies, Equilibrium, and Payoff

The solution concept I use is that of Markov perfect equilibrium, where each generation

t follows a Markov strategy at = αt(pt) for some αt : [0, 1]→ {0, 1} with belief pt as the

state variable. Let A be the set of all Markov strategies that map a state p to a decision

on whether or not to experiment. A Markov perfect equilibrium (MPE) is a profile of

Markov strategies α∗ = (α∗t )t, α
∗
t ∈ A which constitutes a subgame perfect equilibrium.

A stationary Markov perfect equilibrium14 (SMPE) is an MPE in which strategies do not

depend on time. That is, all generations use the same Markov strategy, α∗t = α∗ ∈ A for

all t. I restrict attention to characterizing SMPEs in this paper and let A∗ ⊂ A be the

set of all Markov strategies that constitute an SMPE.

An important class of Markov strategies are threshold strategies, which can be de-

scribed, for some threshold p̄, by: “use the risky technology if belief p is more optimistic

than p̄, otherwise use the safe technology.” More precisely, denoting Ā ⊂ A as the set of

threshold strategies, then αp̄ ∈ Ā is a Markov strategy of the form

αp̄(p) =

{
1 if p ≤ p̄

0 if p > p̄
(5)

for some p̄ ∈ [0, 1]. A threshold Markov perfect equilibrium is an MPE in which all gen-

erations use a threshold Markov strategy. It will be shown that all SMPEs are threshold

MPEs.

The payoff of generation t consists of several terms. First, sat is the private benefits

14In the current setting, “S” could also stand for “symmetric,” where a symmetric MPE is one in
which all players use the same strategy. They coincide in this set up. Moreover, with a minor abuse of
notation, I say α∗ ∈ A constitutes an MPE when indeed α∗ = (α∗)t is an MPE.
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from experimentation. With probability ptλat, a catastrophe occurs, incurring a unit cost

to the generation. If so, ps = 1 for all s > t and the next generation will use the safe

technology, at+1 = 0 since λ > s.15 If no catastrophe occurs now, generation t may still

incur a cost at time t + 1, discounted by δ ∈ (0, 1), caused by generation t + 1’s use of

the risky technology. Thus, generation t’s payoff is

ut = (s− ptλ)at − δ(1− ptλat)pt+1λat+1. (6)

2.4 Discussion of the Model

The assumption that the risky technology provides private benefits to the young, but

may incur costs to both the old and the young is central to the model. The first part

of the assumption is evidently plausible. It holds when risky research is conducted by a

profit-seeking party, which is generally true in the current economic climate where big

technological and pharmaceutical firms drive the research frontiers in artificial intelligence

and biotechnology.

The second part of the assumption, that the old are affected by the actions of the

young is unique to this paper. This makes a generation more risky when they are young

and more conservative when they are old, the opposite sentiment to the typical narrative

in intergenerational conflicts. In overlapping generations models with debt accumulation

or climate exploitation, the old (politicians) are the ones (politically) benefiting from

risky decisions—through more spending and consumption. Since they will not be around

when the bill comes due, excessive debt and unmitigated carbon emissions are the usual

conclusions. In those contexts, the young are the environmentally conservative ones,

trying to stop the risky actions that privately benefit the old.

This paper is concerned with technologically-induced anthropogenic risks. For these

risks, the dynamics are reversed: it is the young who privately benefit from risky actions.

The old, on the other hand, do not materially benefit from these decisions and thus care

exclusively about avoiding catastrophes. Being beyond career ambition and corporate

profits, the old value society’s well-being above small gains from technological advance-

ments. An alternative interpretation of the timing structure is that the old represent

the altruistic utility of a one-period-lived generation. In this interpretation, generation t

cares about the direct offspring in period t + 1, but only to the extent that they do not

suffer from a catastrophe.

Furthermore, the model supposes that the generation makes a decision when they

are born. It is without loss of generality if the generations live for some periods before

taking the action. All payoff-relevant effects from previous actions are captured in the

public belief at time t. For instance, the model can be modified to have three-period-lived

15Since belief now stays at ps = 1 for all s > t, in equilibrium the next generation chooses α(1) ∈ {0, 1}
to maximize (s− λ)α(1)− δλα(1).
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generations, where they make decisions in the second period. The only change this would

have is in the optimal policy since a catastrophe now affects three generations rather

than two. Equilibrium behavior would not change, so as a consequence there would be a

larger discrepancy between the equilibrium and the optimal policy.

3 Equilibrium Analysis

This section analyzes the model. After some preliminary results, I characterize the equi-

librium of the game and show that there is a continuum of SMPEs. Furthermore, I note

a folk-theorem-type behavior that patience leads to a larger set of equilibria.

3.1 Preliminary Analysis

Belief thresholds play a key role in the results of the paper. Hence, I list them here

for easy reference. For ease of notation, I drop explicit dependence on s, λ, and δ as

appropriate.

Decisions are myopic when they only take into account the current period payoff. The

following two belief thresholds are, respectively, what a myopic generation and a myopic

social planner would use to decide on the risky technology:

pm(s, λ) ≡ s

λ
(myopic threshold of each generation),

pM(s, λ) ≡ s

2λ
(myopic threshold of the social planner).

As will be shown in Theorem 1, the model has a continuum of SMPEs in threshold

strategies. Thus, the continuum is defined by an interval of belief thresholds. The smallest

equilibrium threshold is either

p†(s, λ) ≡ s

λ

1− λ
1− s

(smallest equilibrium threshold candidate 1)

or

p̌(s, λ, δ) ≡ s

λ(1 + δ(1− λ))
(smallest equilibrium threshold candidate 2)

depending on the parameters of the model, while the largest equilibrium threshold is

given by

p̂(s, λ, δ) ≡ s

λ(1− δλ)
(largest equilibrium threshold).

Lastly, the social planner uses a different belief threshold for deciding on the optimal use
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p
0 pM p̌(1) pm p̂(1) 1

pOPT(δ)

p̂(s, δ)

p̌(s, δ)

p†(s)

“optimistic” “pessimistic”

Figure 2: Threshold Values.

of the risky technology. Section 4 derives the following:

pOPT(s, λ, δ) ≡ s

λ

δλ+ (1− δ)
δs+ (1− δ)2

(optimal threshold of the social planner).

To prepare for subsequent sections which explore how myopic, equilibrium, and opti-

mal behaviors relate to each other, I compare these beliefs with respect to the parameters

of the model. The following lemma orders these beliefs with respect to the discount factor

δ.

Lemma 1. With respect to δ, the following holds:

(i) pM < p̌(δ) < pm and p̌(δ) is strictly decreasing with p̌(δ)→ pm as δ → 0.

(ii) pm < p̂(δ) and p̂(δ) is strictly increasing with p̂(δ)→ pm as δ → 0.

(iii) pM < pOPT(δ) and pOPT(δ) is strictly increasing with pOPT(δ)→ pM as δ → 0 and

pOPT(δ)→ 1 as δ → 1. Moreover, pOPT ≥ pm if and only if δ ≥ 1
1+(λ−s) .

(iv) p† < pm and p† ≥ p̌(δ) if and only if δ ≥ λ−s
(1−λ)2

.

The relationships between these quantities are depicted in Figure 2, where for quan-

tities that depend on δ, the direction of the arrow indicates increasing δ. Lemma 2

characterizes the properties of these beliefs with respect to s and λ.

Lemma 2. With respect to s and λ, the following holds:

(i) pm, pM , p̌(δ), p̂(δ), and pOPT(δ) are increasing in s.

(ii) pm, pM , p̌(δ), and pOPT(δ) are decreasing in λ.
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(iii) p̂(δ) is decreasing in λ if λ ≤ 1/2δ. Otherwise, p̂(δ) is increasing in λ.

(iv) p† is decreasing in λ, increasing in s, approaches 0 as |λ− s| → 1, and approaches

pm as |λ− s| → 0.

I now proceed with the equilibrium characterization.

3.2 Equilibrium Characterization

Generation t’s problem is to choose whether or not to experiment. To characterize a

stationary Markov perfect equilibrium, we seek a Markov strategy α : [0, 1]→ {0, 1} such

that if as = α(ps) for all other generations s 6= t, then at = α(pt) is a best-response. The

problem is to choose α∗ ∈ A such that, for all p,

α∗ = arg max
α(·)

(s− pλ)α(p)− δ(1− pλα(p))p′λα∗(p′), (7)

where p′ = p(1− λα(p))/(1− pλα(p)) is the next period’s belief. It turns out that there

is a continuum of SMPEs, each with a threshold strategy.16

Theorem 1. α ∈ A∗ if and only if α = αp̄ ∈ Ā with

p̄ ∈ P̄ (s, δ) ≡
[
max

{
p̌(s, δ), p†(s)

}
, p̂(s, δ)

]
. (8)

In this conclusive bad news model of experimentation, belief p < 1 either stays the

same, transitions downward, or jumps to 1. The SMPEs characterized in Theorem 1 are

all in threshold strategies which imply that the initial belief p0 governs the whole dynamics

of equilibrium. Optimistic beliefs lead to experimentation since a catastrophe is less likely,

while pessimistic beliefs lead to more caution and no experimentation. If p0 ≤ p̄, then

all generations, conditioning on not having had a catastrophe, experiment. Belief will

be driven down to be more and more optimistic, leading to further experimentation,

before almost surely jumping to 1 if the true state is bad. If p0 > p̄, then the initial

belief is sufficiently pessimistic to deter experimentation. The initial generation does not

experiment, nor do any generations thereafter. In this case, no generation learns the state

of the world—a missed opportunity if the state turns out to be good.

The continuum of SMPEs covers a range of threshold beliefs. When the threshold is

low, initial belief must be quite optimistic to invoke perpetual experimentation. Some

pessimism is enough to anchor society in the state of no experimentation. In a sense,

there is “less” experimentation when the threshold is low. The opposite is true when

the threshold is high. A slightly optimistic initial belief—that the world is in a good

16All threshold MPEs are also stationary. There may however be non-stationary, non-threshold MPEs.
This is a direction of future research.
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state—will set off experimentation ad infinitum (or at least until a catastrophe occurs).

Thus, there is “more” experimentation when the threshold is high.

Importantly, there are equilibria that are more optimistic and ones that are more

pessimistic than the myopic equilibrium where all generations use the myopic threshold,

pm. Both types of equilibria have some intuitive appeal. I call an equilibrium with

threshold p̄ ≤ pm a cautious SMPE, while those with p̄ > pm are called preemptive

SMPEs. The reasoning is as follows.

The equilibrium with the lowest threshold max{p̌(s, δ), p†(s)} is lower—and there-

fore more optimistic—than the myopic threshold, pm. Equilibria near the lower end are

cautious and exhibit lower experimentation because of the informational externality.17

Experimentation provides information for later generations about the risky technology.

Due to the informational assumption of the model, experimentation by the current gen-

eration encourages further experimentation by later generations since conditional on the

absence of a catastrophe each generation becomes more optimistic than the last. This

means that each generation must be overly cautious when deciding whether or not to ex-

periment. Intuitively, they reflect the thinking: “if I (the current generation) experiment

now, it will invite you (the next generation) to experiment even more in the future, so I

should be more cautious!”

On the other hand, the highest threshold equilibrium p̂(s, δ) is higher—more pes-

simistic—than the myopic threshold. Equilibria near this upper threshold encourages

experimentation and intuitively reflect preemptive behaviors: “if you (the next genera-

tion) are going to sabotage the world, then I (the current generation) would rather do

so now and get some of the benefits!” This is due to the payoff externality in the game.

Private benefits incentivize each generation to experiment, despite the public costs of

doing so. This creates an intergenerational tragedy of the commons. In Section 6.2, I

examine a model without the payoff externality and show that cautious and preemptive

equilibria cease to exist.

3.3 A Folk Theorem

A corollary to Theorem 1 is that patience enlarges the set of equilibria, while impatience

shrinks it to the singleton which only contains the myopic equilibrium. In a sense, the

myopic equilibrium is the most robust equilibrium. This result has the flavor of a folk

theorem.

Corollary 1. For δ < δ′, P̄ (s, δ) ⊆ P̄ (s, δ′). The set P̄ (s, δ) shrinks to {pm} as δ → 0.

The game we are analyzing is a stochastic game, which is a repeated game with a

payoff-relevant state variable that evolves based on the players’ actions. In addition, in

17This is also due to the payoff externality since without it, there is no linkage between the generations
rendering the informational externality ineffective.
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this paper players play sequentially and each player plays only once. Viewed through

this lens, Corollary 1 is a folk theorem for this special case of stochastic games.18 This

interpretation is strengthened by the fact that when there is a definite end date to the

game the continuum of equilibria vanishes and only the myopic equilibrium survives. This

will be shown in Section 6.1 when we look at a finite-horizon version of the model.

4 Social Welfare

As a benchmark, I solve the social planner’s problem. I show that the planner’s solution

is also a threshold policy. I further show that equilibrium and optimal behaviors align

for intermediate social discount rates. Moderate impatience is good for intergenerational

welfare.

4.1 Social Planner’s Problem

A discounted utilitarian social planner19 chooses a sequence of actions a = (at)t to max-

imize the discounted sum of all generations’ payoffs. The problem can be solved as if

time ends after a catastrophe has occurred. This is because if a catastrophe occurs the

optimal action thereafter is to not experiment, rendering a zero continuation value. At

a given time t, expected payoff of the current young generation is (s − ptλ)at. Since a

catastrophe is an externality, we must also account for the expected payoff of the current

old, which is −ptλat. Thus, the planner’s payoff at time t, conditioning on the event that

no catastrophe had occurred, is (s− ptλ2)at.

Define a sequence of random variables {χt}t, where χt takes value 1 if a catastrophe

had not occurred by time t, and takes values 0 otherwise. χt reflects the catastrophic risk

in the model and it plays a role of additional discounting as it enters the planner’s payoff

together with discounting from pure time preference, δ. Thus, given the prior p0 = p and

the sequence of actions a, the planner’s payoff is:

W (a, p) = Ep

[
(1− δ)

∞∑
t=0

δtχt
(
s− 1{ω=B}λ2

)
at

]
, (9)

where the expectation is taken over the processes {pt}t and {χt}t. Let V (p) denote the

value function of the social planner’s problem, then

V (p) = sup
a
W (a, p). (10)

18See Shapley (1953) for a background on stochastic games. For a general analysis of folk theorem in
stochastic games under different assumptions see, for example, Dutta (1995) and Bhaskar et al. (2013).

19I make such a distinction because in Section 5 I consider a game between short-lived planners. A
short-lived planner is someone who cares only about the welfare of the people during their own period.
As will be shown, this mimics the behavior of a fair political process.
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Note that V (p) ≥ 0 since the planner can always prescribe a = 0. Theorem 2 solves for

the value function and shows that the optimal solution is a threshold policy.

Theorem 2. The value function V (p) is piecewise linear and decreasing in p,

V (p) = max

{
s− pλδs+ (1− δ)2

δλ+ (1− δ)
, 0

}
. (11)

The optimal policy is a threshold policy αpOPT, where

pOPT(δ) ≡ s

λ

δλ+ (1− δ)
δs+ (1− δ)2

. (12)

Theorem 2 means that if the prior belief p0 ≤ pOPT, then generations should experi-

ment in perpetuity, or until a catastrophe occurs. If p0 > pOPT, then no generation should

experiment, fixing belief at p0 forever. In the language of state transition, given the op-

timal policy, states p > pOPT are absorbing, while states p ≤ pOPT transition downward

before jumping to 1 almost surely if the state of the world is bad.

Some remarks on pOPT are in order. First, ∂pOPT/∂s > 0 and ∂pOPT/∂λ < 0. An

increase in the benefits of experimentation leads to more pessimistic threshold—the initial

belief that the state of the world is bad must be quite high to not trickle down a wave

of experimentation. The opposite is true for an increase in fragility λ. If a catastrophe

occurs easily, then one should be more cautious. Second, and more interestingly, is the

fact that more patience leads to more experimentation in the optimal solution since pOPT

is increasing in δ (see Lemma 1). As δ → 0, pOPT → pM ≡ s
2λ

, the myopic threshold for

the social planner. Acting myopically, experimentation is worth while if the benefits s

outweighs the expected cost pλ2. As δ → 1, pOPT → 1, so in the limit of intergenerational

equity, the optimal policy prescribes experimentation for all initial beliefs. Moreover,

depending on δ, pOPT may or may not coincide with any equilibrium thresholds—this is

explored further in Section 4.2.

To understand the optimal policy more intuitively, write the value function20 as:

V (p) = max
{

(1− δ)Ω̃(p), 0
}
, (13)

where

Ω̃(p) ≡
∞∑
k=0

δkΩ(k, p) (14)

and

Ω(k, p) ≡ sρ(k, p)− 2pλ(1− λ)k = p(1− λ)k(s− 2λ) + (1− p)s. (15)

The quantity Ω(k, p) is interpreted as the expected payoff of the current period when all

20This is derived in the proof of Theorem 2.
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W (a, p)
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0 pM p̌(1) pm p̂(1) 1

p̄ pOPT<

W (αp̄, p)

V (p)

Figure 3: Equilibrium and Optimal Social Values with p̄ < pOPT.

previous generations have experimented. Its properties are as follows.

Lemma 3. Ω(k, p) has the following properties:

(i) For all k, Ω(k, 0) = s.

(ii) For all k, ∂Ω(k, p)/∂p < 0 and Ω(k, p)→ (1− λ)k(s− 2λ) < 0 as p→ 1.

(iii) For all p, ∂Ω(k, p)/∂k > 0 and Ω(k, p)→ (1− p)s > 0 as k →∞.

First, Ω̃(p) converges for all p. By (ii) of Lemma 3, it strictly decreases in p. More-

over, by (i) and (ii), there exists a belief such that Ω̃(p) equals zero. This is indeed

the optimal threshold pOPT. To see that the optimal threshold must be more pes-

simistic—larger—than the planner’s myopic threshold pM , note that by (iii), Ω(k, pM) > 0

for all k > 0 since Ω(0, pM) = 0. Hence, Ω̃(pM) is necessarily strictly positive and a small

increase to pM + ε would still allow it to be positive. At pM + ε, the early Ω(k, pM + ε)

terms are negative, but as long as later terms are large enough to compensate, Ω̃(pM + ε)

would still be greater than zero. How large ε can be depends on the planner’s patience δ.

The intuition is that if the planner cares about future generations, then even if the

state of the world is likely bad, it is worthwhile for the first few generations to bet against

it and learn more about the state. The hope is that the state of the world is actually

good, allowing future generations to benefit from the new technology without much risk.

4.2 Discount Rate and Efficiency

I now compare optimal and equilibrium outcomes through the lens of the social discount

factor, δ. Given an MPE α∗, W (α∗, p) is the social value of the MPE. By definition,

V (p) ≥ W (α∗, p) and V (p) ≥ 0. However, as will be shown, W (α∗, p) may be negative

for some equilibrium.

Consider an SMPE αp̄. There are three possibilities:
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− If p̄ = pOPT, then the social values coincide, V (p) = W (αp̄, p). The amount of

experimentation is just right.

− If p̄ < pOPT, then the equilibrium exhibits too little experimentation. With initial

belief p0 ∈ (p̄, pOPT), generations do not experiment, while the social planner would

have wanted them to since this would generate information that would be helpful

for all generations to come. I call this under-experimentation. Figure 3 shows the

optimal social value V (p) and the equilibrium social value W (αp̄, p) for this case.

− If p̄ > pOPT, then the equilibrium exhibits too much experimentation. For p0 ∈
(pOPT, p̄), all generations experiment, but they would have been better off not doing

so. Over-experimentation for intermediate values of p0 leads to a negative social

value. The option to choose the risky technology causes society to be worse off than

it would have been otherwise. I term this over-experimentation. Figure 4 depicts

this case.

p

W (a, p)

s

0 pM p̌(1) pm p̂(1) 1

p̄pOPT <

W (αp̄, p)

V (p)

Figure 4: Equilibrium and Optimal Social Values with p̄ > pOPT.

These cases depend on the value of the social discount factor. For a fixed δ ∈ (0, 1),

there is one optimal threshold pOPT(δ), while there is a range of equilibrium thresholds

in P̄ (δ). If pOPT(δ) ∈ P̄ (δ), then there exists an optimal SMPE. If not, then equilibrium

behavior and optimal behavior are necessarily in conflict. By comparing the threshold

values, one can see that if δ is too low, then pOPT(δ) < max{p†, p̌(δ)}. If δ is too high,

then pOPT(δ) > p̂(δ). This means that an optimal SMPE exists for intermediate discount

rates. This is stated in the following theorem.

Theorem 3. There are 0 < δ < δ ≤ 1 such that an optimal SMPE exists if δ ∈ [δ, δ].

Intuitively, when δ is low, temporal effects through the informational externality be-

come muted and the payoff externality dominates. Both the planner and the generations
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are myopic—they care only about their immediate futures. However, the immediate fu-

ture of each generation only involves themselves, while the immediate future of the plan-

ner also takes into account the previous generation. On the other hand, when δ is high,

the informational externality dominates. Each generation only cares about their own

lifetime—ignoring the future informational benefits of the risky technology—resulting in

an inefficiently low use of the risky technology.

While one wishes that the generations would settle on the threshold that is closest to

the optimal one, all SMPEs are equally focal in the current model. It would be interesting

to ask how a near-optimal equilibrium could be favored. However, one can also argue

that the myopic equilibrium with threshold pm is most likely to occur since it survives as

an equilibrium for all discount rates.

5 Political Equilibrium

This section relaxes the assumption that the young decide on experimentation. I first

ask whether the old and the young can work together to achieve a better outcome than

that of the baseline model. The answer is no—only under-experimentation arises. Some

tension between the young and the old seems to be crucial for optimal experimentation.

I then present a generalization with a political process whereby the young and the old

vote on the choice of technology. I show that in this game the old should be given less

than half of the political power.

5.1 Short-lived Planner

This section looks at a game between short-lived planners, where planner t represents the

interests of the entire population at time t—that is, both the young and the old. Planner

t’s problem is to choose whether or not to experiment with the payoff:

(s− ptλ2)at − δ(1− ptλat)pt+1λat+1. (16)

The difference from generation t’s payoff previously in (6) is the extra 2 in the first

term, which accounts for the risk faced by the old. Thus, for the purpose of equilibrium

characterization the game with short-lived planners is strategically equivalent to the

baseline game up to a reparameterization.

Proposition 1. αp̄ constitutes an SMPE of the game with short-lived planners if and

only if

p̄ ∈
[
max

{
p̌

(
s

2
,
δ

2

)
, p†
(s

2

)}
, p̂

(
s

2
,
δ

2

)]
, (17)

All SMPEs exhibit under-experimentation.
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The short-lived planner game models a situation where self-interest is not confined

to within a generation, but within a period. Another interpretation is that the young

and the old coordinate, perhaps through a political process, to choose whether or not to

experiment at time t.

Does this get society any closer to optimal experimentation? Unfortunately not. Since

pM < pOPT(δ), only the preemptive equilibria (in this setting, this means the equilibria

with threshold larger than pM) of the short-lived planner game have any chance of being

optimal. Cautious equilibria (those with threshold lower than pM) are never optimal.

However, it turns out that the preemptive equilibria are also not optimal as the short-lived

planner is more conservative than the generation. Under-experimentation is guaranteed

because p̂(s/2, δ/2) < pOPT(δ) for all δ > 0.

How can correcting for an externality—by giving voice to the old who is negatively

affected by the young’s action—result in a worse outcome? The answer is that though

this political process shuts off the payoff externality, which is the driving force of over-

experimentation, it still lets the informational externality roam free. As will be shown

next, one can do better by alleviating the payoff externality just enough to counter the

informational externality, allowing for the possibility for optimal experimentation.

5.2 Political Process

The short-lived planner equilibrium is a special case of a political equilibrium, where a

vote on the use of the risky technology takes place in every period. In the baseline model,

the young are in total control of the decision and the old have no say. In the case of the

short-lived planner, the young and the old have equal say. This section considers the

intermediate case where period t’s political payoff 21 is given by(
s− ptλ

π

)
at − δ(1− ptλat)pt+1λat+1, (18)

where π ∈ [0, 1] is called a political process, interpreted as the young’s relative political

power. The baseline model has π = 1, in which the young have all the political power,

while the short-lived planner case has π = 1/2, in which the political power is equally

shared. Following Song et al. (2012)’s intergenerational model of public expenditure and

debt, the political payoff and the parameter π can be micro-founded by a probabilistic

voting model between the young and the old. As in the case of short-lived planners, the

political equilibrium of the game with political process is characterized via a reparame-

terization of the baseline case.

Proposition 2. αp̄ constitutes an SMPE of the game with political process π ∈ [0, 1] if

21The expression is essentially a convex combination of the young and the old payoffs.
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and only if

p̄ ∈
[
max

{
p̌ (πs, πδ) , p† (πs)

}
, p̂ (πs, πδ)

]
. (19)

If π ≤ 1/2, all SMPEs exhibit under-experimentation.

I have shown that for π = 1 (baseline case), an optimal equilibrium does not exist if

δ /∈ [δ, δ]. For π = 1/2 (short-lived planner), an optimal equilibrium does not exist for

any δ. When π = 0, the old have all the political power and they will never prescribe

experimentation: p̄ = 0 is the only equilibrium threshold. Again, this means that an

optimal equilibrium does not exist. Indeed, for any π ≤ 1/2, there is no optimal equilib-

rium. Intuitively, giving too much political power to those who do not profit from using

the risky technology results in under-experimentation and hinders society’s potential to

learn about new technologies.

However, an appropriately chosen political process (one with π > 1/2) can indeed

improve upon the baseline model, but only to correct for over-experimentation. Modifying

the result in Theorem 3 to allow for a political process gives the following.

Theorem 4. If δ ∈ (0, δ], then there is an optimal SMPE in the intergenerational exper-

imentation game with some political process π∗ ∈ (1/2, 1].

To see why this holds, consider Theorem 3. When δ < δ, all SMPEs have thresholds

higher than the optimal threshold, so every SMPE exhibits over-experimentation. Recall

that over-experimentation is the tendency to use the risky technology when it is not in

society’s best interest to do so. This resulted from the payoff externality—the young

do not internalize the potential for catastrophic damage on the old. If we give some

political power—through an appropriately chosen π—to the old, then this inefficiency

can be corrected. One such π is given by:

π∗ ≡ δλ+ (1− δ)
δs+ (1− δ)2

. (20)

To see this, note that πs/λ is always in the set of equilibrium thresholds. Setting π∗

such that πs/λ = pOPT(δ) guarantees the existence of an equilibrium that mimics the

optimal policy. However, π∗ cannot always be chosen since the right-hand-side of (20)

ranges from 1/2 to λ/s > 1, while π∗ cannot be more than 1. Indeed, it cannot correct

for under-experimentation when the society is too patient, δ > δ. This is intuitive since

π < 1 means inviting the old to be included in the decision process and they do not

support experimentation. If there is under-experimentation when π = 1, then there will

be even more under-experimentation when π < 1.
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6 Discussion and Extensions

I consider four alternative specifications to the baseline model. First, I consider the

finite-horizon version of the game and demonstrate that only the myopic equilibrium

survives. Second, I remove the payoff externality and show that without it only under-

experimentation arises. Third, I investigate a model where damage from a catastrophe

lasts for many periods. Lastly, I argue that the assumption of risk neutrality is without

much loss of generality as risk aversion does not qualitatively change the results.

6.1 Finite-Horizon

As mentioned, when there is a definite end date to the game, the continuum of equilibria

vanishes and only the myopic equilibrium survives. I now formally analyze the finite-

horizon model.

Define a truncated game with end date T <∞ as a finite-horizon game with T players

who move sequentially one at a time and whose payoffs are

ut(a
T ) = (s− ptλ)at − δ(1− ptλat)pt+1λat+1 (21)

for t ∈ {0, . . . , T − 2} and uT−1(aT ) = (s − pT−1λ)aT−1, where aT = (a0, . . . aT−1) ∈
{0, 1}T . The equation of motion for the belief pt is as before. We have the following

proposition.

Proposition 3. In a truncated game with any T <∞, the unique MPE is at = αpm.

It turns out that the myopic equilibrium is indeed the unique MPE. There are no other

MPEs, non-stationary, non-threshold, or otherwise. Moreover, the myopic equilibrium is

also equivalent—in the sense that it prescribes the same behaviors and implements the

same outcome for any starting belief—to the unique subgame perfect equilibrium (SPE)

of the truncated finite-horizon game. This can be shown by a direct backward induction

proof. This again indicates that the multiplicity of equilibria in the infinite-horizon game

rests on a folk-theorem-type result. The truncated game equilibrium behavior is akin to

the defection equilibrium of a finitely-repeated prisoner’s dilemma, while the continuum

of equilibria in Theorem 1 is akin to the multiplicity of SPEs in an infinitely-repeated

prisoner’s dilemma. Indeed, some of these strategies can—depending on the values of

the discount rate as in Theorem 3—sustain optimal behavior, just like how the grim-

trigger strategy can sustain a cooperation equilibrium in an infinitely-repeated prisoner’s

dilemma.
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6.2 No Payoff Externality

I now look at a model without the payoff externality. The equilibrium behavior in a

model without the payoff externality is simply the myopic threshold strategy because

every generation compares their own private costs and benefits of experimentation. Now,

optimal behavior solves the social planner’s problem without the payoff externality:

max
a

Ep

[
(1− δ)

∞∑
t=0

δtχt
(
s− 1{ω=B}λ

)
at

]
. (22)

This problem is akin to a single-agent experimentation problem, where one compares the

myopic solution with the optimal policy. I demonstrate the following proposition for the

model with no payoff externality.

Proposition 4. The unique SMPE of the game with no payoff externality is αpm. The

optimal policy of the game with no payoff externality is αp∗, where

p∗(δ) ≡ s

λ

δλ+ (1− δ)
δs+ (1− δ)

. (23)

The SMPE exhibits under-experimentation.

As mentioned in Section 3, without the payoff externality preemptive behaviors disap-

pear because the young know that the next generation will not be able to affect them when

they are old. Because of this, equilibrium behavior does not exhibit over-experimentation

(as compared to optimal behavior of the model without the payoff externality). More-

over, without the payoff externality, the informational externality actually has no bite:

the beliefs of future generations do not affect the current generation’s payoff in any way.

Nevertheless, under-experimentation persists. This is due to the fact that generations

are short-lived and do not want to pay present costs for the potential future benefits that

would come from finding out that the true state is after all good.

6.3 Long-term Impact

Let us now consider a model where the impact of a catastrophe lasts for τ ≥ 2 periods. I

call this game intergenerational experimentation with long-term impact. When τ = ∞,

the impact is irreversible.

Generation t’s payoff is now

ut = (s− ptλ)at − δptλat − δ(1− ptλat)pt+1λat+1 (24)

The difference from generation t’s previous payoff, in (6), is the additional term in the

middle. This term represents the damage in the next period that generation t incurs if a
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catastrophe happens. The planner’s payoff is now

Ep

[
(1− δ)

∞∑
t=0

δtχt
(
s− 1{ω=B}λ2X(τ, δ)

)
at

]
, (25)

where X(τ, δ) ≡ 1 + δ + δ2 + · · ·+ δτ−1. We have the following result.

Proposition 5. αp̄ constitutes an SMPE of the game with long-term impact (τ ≥ 2) if

and only if

p̄ ∈
[
max

{
p̌

(
s

1 + δ
,

δ

1 + δ

)
, p†
(

s

1 + δ

)}
, p̂

(
s

1 + δ
,

δ

1 + δ

)]
. (26)

The optimal policy is αpτ , τ <∞, where

pτ (δ) ≡ s

λ

δλ+ (1− δ)
δs+ (1− δ)2X(τ, δ)

. (27)

If the impact is irreversible, the optimal policy is αp∞, where

p∞(δ) ≡ s

λ

δλ+ (1− δ)
δs+ 2

. (28)

In the case of long-term impact, it is not surprising that the social planner is more

conservative—only prescribing experimentation when the initial belief is extremely op-

timistic, that is, when a catastrophe is likely impossible. But how do the generations

behave? Proposition 5 asserts that there is still a continuum of equilibria for the in-

tergenerational game. However, preemptive behaviors no longer arise, because for all

δ ∈ (0, 1),

pm > p̂

(
s

1 + δ
,

δ

1 + δ

)
. (29)

Recall that the intuition for preemption was that: “if you (the next generation) are

going to sabotage the world, then I (the current generation) would rather do so now

and get some of the benefits!” With long-term impact, this sentiment no longer holds

since damage lasts for multiple periods: using the risky technology now will also cause a

damage in the future.

6.4 Risk Aversion

The paper has thus far assumed that generations are risk-neutral. Suppose that each

generation is an expected utility maximizer with a utility function u(·) which is strictly

increasing and concave, u′(·) > 0 and u′′(·) < 0, and normalized so that u(0) = 0. It

turns out that risk aversion does not qualitatively alter the results, but simply transforms

the parameters s and δ.
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At time t, using the safe technology yields u(0) to generation t. A risky technology,

however, yields (1− pt)u(s) + pt [(1− λ)u(s) + λu(s− 1)]. The expected payoff at t+ 1,

conditioning on no catastrophe, is either (1− pt+1)u(0) + pt+1 [(1− λ)u(0) + λu(−1)] or

u(0) depending on whether or not the young at t+ 1 use the risky technology. Together,

generation t’s payoff can be written as:

[u(s)− (u(s)− u(s− 1)) ptλ] at + δ(1− ptλat)pt+1λu(−1)at+1 (30)

A strategically equivalent payoff is[
u(s)

u(s)− u(s− 1)
− ptλ

]
at −

|u(−1)|
u(s)− u(s− 1)

δ(1− ptλat)pt+1λat+1 (31)

Note that the payoff in (31) has the same form as that in (6). Define

sσ ≡ u(s)

u(s)− u(s− 1)
and δσ ≡ |u(−1)|

u(s)− u(s− 1)
δ (32)

to be the effective benefits of the risky technology and the effective discount factor with

risk aversion, respectively. With risk neutrality, sσ = s and δσ = δ as expected. Now, by

concavity of u, it is easy to see that δσ ≥ δ and more difficult to see that sσ ≤ s.22 Thus,

the same method of equilibrium characterization (Theorem 1), subject to the condition

that δσ ≤ 1, also works when generations are risk-averse. It follows from this observation

that risk-aversion effectively lowers the benefits of the risky technology, deterring its use,

while at the same time enlarges the set of equilibria. The qualitative features of the set

of equilibria do not change.

7 Conclusion

I study the problem of intergenerational tragedy of the commons via a model of strategic

experimentation with overlapping generations. There is an equilibrium where the players’

behaviors align with what would have been prescribed by a social planner. Importantly,

this alignment rests on the discount rate. The existence of this optimal equilibrium,

however, is not robust. I show that for many variations of the model, equilibrium behavior

cannot be socially optimal.

Future research might attempt to find ways of enforcing the best equilibrium when

one exists, perhaps through an intergenarational Pigouvian tax or other political process.

22This follows because s ∈ (0, 1) and

su(s− 1) + (1− s)u(s) ≤ u(s(s− 1) + (1− s)s) = 0.
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Another direction is to relax the assumption of a homogeneous Poisson process, where

the probability of a catastrophe in the bad state stays constant over time. This is chal-

lenging since one loses stationarity, but it promises to be a fruitful endeavor. Alas, many

assumptions had to be made for the purpose of solvability and tractability. My hope is

that this work adds to the literature by offering new ways to think about the problem of

strategic experimentation in the context of intergenerational conflicts and catastrophes.

A Proofs

Proof of Lemma 1. These facts follow from elementary calculus and algebra.

Proof of Lemma 2. These facts follow from elementary calculus and algebra.

Proof of Theorem 1. The proof proceeds in three steps. First, I show that any SMPE

is in threshold strategy, A∗ ⊂ Ā. Second, for p̄ ∈ P̄ (δ), I show that at = αp̄(p) is a

best-response to at+1 = αp̄(p
′) for any p. Third, I prove the only if part by showing that

αp̄ does not constitute an SMPE if p̄ /∈ P̄ (δ).

Step 1. It suffices to show that a threshold strategy is a (generically) unique best-

response to any strategy. Suppose the next generation uses α̃ ∈ A and that the

current belief is p. The relevant actions of the next generation are α̃(p) ∈ {0, 1}
and α̃(p′) ∈ {0, 1}, where p′ = p(1−λ)

1−pλ . I now show that the best-response against

each of the four possibilities is a threshold strategy.

(i) If α̃(p) = 0 and α̃(p′) = 0, so the next generation takes the safe action

regardless. Thus, the current generation should take the risky action if s−pλ ≥
0 or p ≤ s/λ.

(ii) If α̃(p) = 1 and α̃(p′) = 1, so the next generation takes the risky action

regardless. Thus, the current generation should take the risky action if (s −
pλ)− δp(1− λ)λ ≥ −δpλ or p ≤ s

λ(1−δλ)
.

(iii) If α̃(p) = 0 and α̃(p′) = 1, so the next generation takes the risky action

only if the current takes the risky action regardless. Thus, the current genera-

tion should take the risky action if (s−pλ)−δp(1−λ)λ ≥ 0 or p ≤ s
λ(1+δ(1−λ))

.

(iv) If α̃(p) = 1 and α̃(p′) = 0, so the next generation takes the risky action

only if the current takes the safe action. Thus, the current generation should

take the risky action if (s− pλ) ≥ −δpλ or p ≤ s
λ(1−δ) .

These best-responses are unique up to prescription of the action exactly on the

threshold, so it follows that all SMPEs are in threshold strategies.
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Step 2. Fix p̄ ∈ P̄ (δ) and suppose that generation t+ 1 uses the threshold strategy

αp̄.

(i) If p ≤ p̄, then since p′ is either p or p(1 − λ)/(1 − pλ) ≤ p, we have that

p′ ≤ p̄. This means that at+1 = αp̄(p
′) = 1, so generation t’s best-response is

to choose at = 1 which maximizes

[s− pλ(1− δλ)]at − δpλ. (33)

This holds because p ≤ p̄ ≤ p̂(δ), so s− pλ(1− δλ) ≥ 0. Thus, at = αp̄(p) is a

best-response.

(ii) If p > p̄, then p′ can either be greater than or less than p̄, depending on at

and how much higher p is from p̄. Suppose p is such that p(1−λ)/(1−pλ) > p̄,

so p′ > p̄ regardless. Then, at+1 = αp̄(p
′) = 0 always. Now, I claim that

p ≥ pm, so that s− pλ < 0, and at = 0 is a best-response. Suppose not, then

p < pm would imply that p(1− λ)/(1− pλ) < p†, a contradiction to p̄ ∈ P̄ (δ).

On the other hand, suppose p is such that p(1− λ)/(1− pλ) ≤ p̄, then at = 0

means that at+1 = αp̄(p
′) = 0, while at = 1 would push p′ down so that

at+1 = αp̄(p
′) = 1. Generation t then effectively chooses between payoffs of 0

and s−pλ[1+δ(1−λ)]. Now, because p > p̄ ≥ p̂(δ), we have s−pλ[1+δ(1−λ)] <

0. Thus, in both cases, the best-response is to follow the threshold strategy,

at = αp̄(p).

Step 3. Fix p̄ /∈ P̄ (δ). There are three non-mutually exclusive, but exhaustive cases.

(i) p̄ < p̌(δ). Consider p ∈ (p̄, p̌(δ)), so αp̄(p) = 0. This yields a payoff of 0

since at+1 = αp̄(p
′) = 0. Now, at = 1, would either mean at+1 = αp̄(p

′) = 0 or

at+1 = αp̄(p
′) = 1. In either case, the payoff is strictly positive—a profitable

deviation.

(ii) p̄ < p†. Consider p = pm − ε for a sufficiently small ε > 0 such that

p(1 − λ)/(1 − pλ) ∈ (p̄, p†). Such an ε exists because the definition of p†

and the fact that p 7→ p(1 − λ)/(1 − pλ) is a continuous map. For such p,

αp̄(p) = 0, but at = 1 is a profitable deviation since it yields s− pλ, which is

strictly positive for p < pm.

(iii) p̄ > p̂(δ). Consider p ∈ (p̂(δ), p̄), so αp̄(p) = 1. Then, p′ < p̄ always,

meaning that at+1 = αp̄(p
′) = 1. A profitable deviation is to choose at = 0

since s− pλ(1− δλ) < 0 for p > p̂(δ).

Thus, αp̄ does not constitute an equilibrium for p̄ /∈ P̄ (δ).
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Proof of Corollary 1. The corollary follows from the definition of P̄ (δ) in Theorem 1

and the properties of p̌(δ) and p̂(δ) from Lemma 1.

Proof of Theorem 2. The value function can be rewritten out

V (p) = max
a

{
(1− δ)(s− pλ2)a0 + Ep′

[
(1− δ)

∞∑
t=1

δtχt(s− 1{ω=B}λ2)at

]}
, (34)

where p′ = p(1 − λa0)/(1 − pλa0). Now, conditioning on χ1 = 1, the event that the

game has no ended by time 1, which occurs with probability (1− pλa), we can write the

Bellman equation as

V (p) = max
a∈{0,1}

(1− δ)(s− pλ2)a+ δ(1− pλa)V (p′) (35)

where p′ = p(1− λa)/(1− pλa).

First, note that V (0) = s because p = 0 implies p′ = 0, so the Bellman equation gives

V (0) = maxa∈{0,1} (1− δ)sa+ δV (0). Now, for p < 1, the value function must satisfy

V (p) = max {δV (p), (1− δ)(s− pλ2) + δ(1− pλ)V (p′)} where p′ =
p(1− λ)

1− pλ
. (36)

Note that if δV (p) ≥ (1− δ)(s−pλ2)+ δ(1−pλ)V (p′), then V (p) = δV (p), which implies

V (p) = 0 because δ < 1. Therefore, we have that

V (p) = max {(1− δ)(s− pλ2) + δ(1− pλ)V (p′), 0} , (37)

which can now iterate to solve for the closed-form expression of V (p). Consider p such

that V (p) > 0, then using ρ(k, p) ≡ p(1− λ)k + (1− p) as defined, we have

V (p) = (1− δ)(s− pλ2) + δρ(1, p)V (p′)

= (1− δ)(s− pλ2) + δρ(1, p)

[
(1− δ)

(
s− p(1− λ)

ρ(1, p)
λ2

)
+ δ

ρ(2, p)

ρ(1, p)
V (p′′)

]
= (1− δ) {(s− pλ2) + δ[sρ(1, p)− pλ2(1− λ)]}+ δ2ρ(2, p)V (p′′)

= (1− δ){(s− pλ2) + δ[sρ(1, p)− pλ2(1− λ)]

+ δ2[sρ(2, p)− pλ2(1− λ)2]}+ δ3ρ(3, p)V (p′′′)

= (1− δ)
∞∑
k=0

δkΩ(k, p),

(38)

where

Ω(k, p) ≡ sρ(k, p)− 2pλ(1− λ)k. (39)
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Summing the geometric series gives

V (p) = s− pλδs+ (1− δ)2
δλ+ (1− δ)

(40)

when p is such that V (p) > 0. The value function for all p follows. In particular, V (0) = s,

V (1) = 0, and V ′(p) ≤ 0. Note that to get the optimal policy, we simply find the belief

pOPT where the downward sloping part of V (p) hits zero.

Proof of Lemma 3. These facts follow from elementary calculus and algebra.

Proof of Theorem 3. The proof is by comparison of the threshold values for different

δ such that pOPT(δ) ∈ P̄ (δ). By Lemma 1,

max{p̌(δ), p†} < p̂(δ). (41)

We prove the upper and the lower bounds separately.

Upper bound. There is no optimal SMPE if pOPT(δ) > p̂(δ).

We compare the quantities λpOPT(δ)/s and λp̂(δ)/s, and call them LHS and RHS,

respectively. At δ = 0, LHS is 1/2, while RHS is 1. At δ = 1, LHS = λ/s, while

RHS = 1/(1− λ). Now, because both quantities are strictly increasing in δ, there

exists δ ≤ 1 such that pOPT(δ) ≤ p̂(δ) for δ ≤ δ and pOPT(δ) > p̂(δ) otherwise.

Note that δ may be 1, which means that pOPT(δ) ≤ p̂(δ) for all δ. This occurs when

λ/s ≤ 1/(1− λ). Furthermore, at δ, pm < pOPT(δ).

We can derive an explicit δ̄ by a direct comparison. This yields that

δ = min

{√
(1− s)2 + 4(1− λ)λ− (1− s)

2(1− λ)λ
, 1

}
. (42)

Lower bound. There is no optimal SMPE if pOPT(δ) < max{p̌(δ), p†}.

Either p† ≤ p̌(1), so max{p̌(δ), p†} = p̌(δ) for all δ or p† ∈ (p̌(1), p̌(0)). Define

δ† ∈ (0, 1] such that max{p̌(δ), p†} = p̌(δ) if and only if δ ≤ δ†. At δ = 0,

pOPT(0) < max{p̌(0), p†} = p̌(0) = pm. At δ = 1, pOPT(1) > max{p̌(1), p†} = p̌(δ†).

Now, since pOPT is strictly increasing and max{p̌(δ), p†} is weakly decreasing, there

must exists δ > 0, where they intersect. Such δ must also satisfy pOPT(δ) < pm.

Again, we can derive δ explicitly:

δ = max

{
(2− s)−

√
(2− s)2 − 4(1− λ)2

2(1− λ)2
,
1 + s− 2λ

1− λ

}
. (43)

Together, we know that δ < δ because pOPT(δ) < pm < pOPT(δ).
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If δ = 1
1+(λ−s) , then pOPT(δ) = pm. Since threshold pm is always an equilibrium, there

is always an optimal equilibrium at such discount rate.

Proof of Proposition 1. Rewrite planner t’s utility as

2

[(s
2
− ptλ

)
at −

δ

2
(1− ptλat)pt+1λat+1

]
(44)

Thus, the strategic problem between short-lived planners is akin to generation t’s problem

with the parameters s/2 and δ/2. The characterization is then a corollary of Theorem

1. Under-experimentation always ensues (unless δ = 0) because the highest experimen-

tation equilibrium threshold p̂
(
s
2
, δ

2

)
is lower than pOPT(δ). One can show that if δ > 0,

p̂
(
s
2
, δ

2

)
< pOPT(δ) simplifies to s < λ+ δλ(1− λ), which holds.

Proof of Proposition 2. As with the short-lived planner problem, the characterization

of the political equilibrium is a corollary of Theorem 1 with benefits and discount rate

redefined to πs and πδ, respectively. If π ≤ 1/2, then p̂(πs, πδ) ≤ p̂(s/2, δ/2) and it

follows from the proof of Proposition 1 that there is no optimal SMPE.

Proof of Theorem 4. This is essentially Theorem 3 modified with the reasoning in the

main text.

Proof of Proposition 3. We first show that in the infinite-horizon game, for any

p̄ ∈ P̄ (δ), at = αp̄ is the unique best-response to at+1 = αp̄. Let α ¯̄p be another threshold

strategy.

If ¯̄p < p̄, then consider p ∈ (¯̄p, p̄). In this case, p′ < p̄, so at+1 = 1. However, α ¯̄p(p) = 0

and a profitable deviation is at = 1 since

(s− pλ)− δ(1− λ)pλ = s− pλ(1− δλ)− δpλ > −δpλ. (45)

The inequality follows because p < p̄ ≤ s
λ(1−δλ)

.

If ¯̄p > p̄, then first let ¯̄p = p̄+ε for some ε > 0 small enough. Consider p ∈ (p̄, ¯̄p). Since

p is very close to p̄, following the strategy at = α ¯̄p(p) = 1 means that at+1 = αp̄(p
′) = 1 as

well, while if at = 0, then at+1 = αp̄(p
′) = αp̄(p) = 0. The former action yields a negative

payoff, while the later gives zero. Thus, at = 0 is a profitable deviation and α ¯̄p is not a

best-response. Now, suppose that ¯̄p is far enough away from p̄, so there is a p ∈ (p̄, ¯̄p)

such that p(1− λ)/(1− pλ) > p̄. If this is the case, then at+1 = 0 regardless of at and it

follows that α ¯̄p(p) = 1 is not a best-response.

We have established that for any t, αp̄ is the unique best-response to at+1 = αp̄.

In the truncated game, the last young generation at time T − 1 chooses aT−1 = αpm .

It now follows that the unique best-response for aT−2 is also αpm . We can then work

backwards to claim that in the truncated game, the only MPE is at = αpm for all t ∈
{0, 1, . . . , T − 1}.
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Proof of Proposition 4. That equilibrium is at = αpm is straightforward. For the

optimal policy, the proof is the same as that of Theorem 2 without the factor of 2. Since

λ > s, pm ≤ p∗(δ) with equality if and only if δ = 0, so there is under-experimentation if

δ > 0.

Proof of Proposition 5. The proof of the equilibrium characterization is via redefining

the appropriate parameters in Theorem 1. Specifically, write the payoff as

at − δ(1− ptλat)pt+1λat+1

= (1 + δ)

[(
s

1 + δ
− ptλ

)
at −

δ

1 + δ
(1− ptλat)pt+1λat+1

] (46)

Then redefine s 7→ s/(1 + δ) and δ 7→ δ/(1 + δ), and use the characterization from

Theorem 1. For the planner’s problem, redefining 2 7→ 2X(τ, δ) and derive the optimal

policy from Theorem 2.

B Two-Period Model

In the two-period model, time ends after generation 1 makes a decision. I allow the

fragility parameter λt to be changing over time. I call the generations G0 and G1, and

denote λ0 and λ1 to be their fragilities, respectively. Usage of the risky technology is also

allowed to be a continuum, at ∈ [0, 1].

λ1

1

s
p0

0 s
p0

1
λ0

(0, 0)

(1, 0)

(1, 1)

(â0, 0)

(0, 1)

λ0 = λ1

Figure 5: Equilibrium Outcomes for a Two-Period Model.

Assume for simplicity that δ = 1. Generation 1, condition on no catastrophe, solves

maxa1∈[0,1] sa1 − p1λ1a1, where p1 ≡ p1(a0;λ0) = p0(1−λ0a0)
1−p0λ0a0 . If s > p0λ1 then G1 chooses
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1 always because p1 ≤ p0, i.e., if a breakdown does not occur, then a bad state is less

likely. G0 solves

max
a0∈[0,1]

sa0 − p0λ0a0 − (1− p0λ0a0)p1λ1. (47)

This simplifies to maxa∈[0,1][s − p0λ0(1 − λ1)]a − p0λ1. Thus, if s > p0λ0, then s ≥
p0λ0(1−λ1) and G0 chooses 1. If s < p0λ0, then depending on the sign of s−p0λ0(1−λ1)

G0 chooses 0 or 1 (or a continuum in between). The most interesting case is when

p0λ0 > s > p0λ0(1−λ1). This is when G0 will not experiment if they were by themselves.

This is exactly the preemption incentive in the main model. However, when there is a

possibility that G1 will cause the catastrophe, G0 at least wants some benefits to counter

that breakdown cost. This is what I called the preemptive behavior in the full model.

Continuing with the analysis, if s < p0λ1, then G1 chooses 0 or 1 (or the contin-

uum in between) depending on the sign of s − p1λ1. If s > p0λ0, then the outcome is

(max{â0, 1}, 0), where â0 is defined as a cutoff in G0’s action such that G1 is indifferent

between experimenting and not. This reflects the cautious behavior in the full model,

where the earlier generation is reluctant to experiment, even though it is beneficial in the

myopic sense, since it will potentially invite more experimentation in the future. Lastly,

if s < p0λ0, then (0, 0) occurs.

To summarize, we have:

(i) If s > p0λ1 and s > p0λ0, then equilibrium is (1, 1).

(ii) If s > p0λ1 and s < p0λ0, then equilibrium is either (0, 1) or (1, 1).

(iii) If s < p0λ1 and s > p0λ0, then equilibrium is (max{â0, 1}, 0).

(iv) If s < p0λ1 and s < p0λ0, then equilibrium is (0, 0).

The characterization is depicted in the λ-space in Figure 5. The bad news model,

although can be thought of as a reverse of the good news model, yields simpler and

qualitatively different—not just the opposite—results that that of the good news model.

In the main model of this paper, I have assumed that λt = λ for all t. This translates

to λ0 = λ1 = λ in the two-period model. This case is captured by the diagonal of Figure

5. Only two outcomes prevail: (1, 1) and (0, 0). Either both generations experiment,

given the chance, or no one experiments, just like the full indefinite-horizon model. In

terms of MPE, the unique one here is the myopic threshold equilibrium, pm = s/λ. As

mentioned at the end of Section 3, this is the only MPE that prevails if the game ends at

a fixed time. Off the diagonal, however, other interesting behaviors are possible. These

behaviors are expected to be present if we relax the assumption on constant fragility in

the full model.
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Bergemann, D. and Välimäki, J. (2008). Bandit problems. In The New Palgrave Dictio-
nary of Economics, 2nd Ed. Macmillan Press.

Bhaskar, V., Mailath, G. J., and Morris, S. (2013). A Foundation for Markov Equilibria
in Sequential Games with Finite Social Memory. The Review of Economic Studies,
80(3):925–948.

Bolton, P. and Harris, C. (1999). Strategic experimentation. Econometrica, 67(2):349–
374.

Bostrom, N. (2019). The Vulnerable World Hypothesis. Global Policy, 10(4):455–476.

Dutta, P. K. (1995). A Folk Theorem for Stochastic Games. Journal of Economic Theory,
66(1):1–32.

Farquhar, S., Halstead, J., Cotton-Barratt, O., Schubert, S., Belfield, H., and Snyder-
Beattie, A. (2017). Existential Risk – Diplomacy and Governance. Technical report,
Global Priorities Project.

Gerlagh, R. and Liski, M. (2018a). Carbon prices for the next hundred years. The
Economic Journal, 128(609):728–757.

Gerlagh, R. and Liski, M. (2018b). Consistent climate policies. Journal of the European
Economic Association, 16(1):1–44.

Golosov, M., Hassler, J., Krusell, P., and Tsyvinski, A. (2014). Optimal taxes on fossil
fuel in general equilibrium. Econometrica, 82(1):41–88.

Guillouet, L. and Martimort, D. (2020). Precaution, Information and Time-Inconsistency:
On The Value of the Precautionary Principle. Centre for Economic Policy Research.

Hassler, J. and Krusell, P. (2012). Economics and climate change: Integrated assessment
in a multi-region world. Journal of the European Economic Association, 10(5):974–
1000.

Karp, L. (2017). Natural Resources as Capital. MIT Press.

Karp, L. and Tsur, Y. (2011). Time perspective and climate change policy. Journal of
Environmental Economics and Management, 62(1):1–14.

Keller, G. and Rady, S. (2015). Breakdowns. Theoretical Economics, 10(1):175–202.

33



Keller, G., Rady, S., and Cripps, M. (2005). Strategic experimentation with exponential
bandits. Econometrica, 73(1):39–68.

Kormann, C. (2019). Is Nuclear Power Worth the Risk? The New Yorker.
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