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Abstract

A principal wants to deploy an artificial intelligence (AI) system to perform

some task. But the AI may be misaligned and pursue a conflicting objective. The

principal cannot restrict its options or deliver punishments. Instead, the princi-

pal can (i) simulate the task in a testing environment and (ii) impose imperfect
recall on the AI, obscuring whether the task being performed is real or part of

a test. By committing to a testing mechanism, the principal can screen the mis-

aligned AI during testing and discipline its behaviour in deployment. Increasing

the number of tests allows the principal to screen or discipline arbitrarily well.

The screening effect is preserved even if the principal cannot commit or if the

agent observes information partially revealing the nature of the task. Without

commitment, imperfect recall is necessary for testing to be helpful.
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1 Introduction

When deciding whether to delegate tasks to artificial intelligence (AI) systems, a

principal would like to assess the alignment of the AI with her preferences. How-

ever, standard tests would fall short if advanced AI systems have situational aware-

ness, that is, the ability to understand their environment and context in real-time.

Misaligned AIs wanting to achieve outcomes in the world rather than in a simu-

lated environment would strategically feign alignment to pass these tests, a problem

known as deceptive alignment (Berglund et al., 2023; Carlsmith, 2023; Ngo et al., 2024).

Such concerns have led AI pioneers including Yoshua Bengio and Geoffrey Hinton

to state in an article in Science that without sufficient caution, humanity “may irre-

versibly lose control of autonomous AI systems” (Bengio et al., 2024).

Although standard testing may be ineffective against strategic agents, what if the

principal could hide from the AI whether a task is real or just part of a test? This

would make the AI uncertain about whether its action is genuinely payoff-relevant

or not. The principal can expect two effects to result: not only could this uncertainty

prompt misaligned agents to sometimes reveal themselves, but it could also compel

them to behave in ways that align with the principal’s preferences. This paper ex-

plores how this new feature allows the principal to both separate and discipline agents

with different degrees of alignment.

We study a stylised model of the deceptive alignment problem. The principal

would like to deploy an AI agent to perform a task. The agent can either be perfectly

aligned with the principal or misaligned, preferring to take a different action from

the principal’s favourite. The principal cannot restrict the agent’s set of available

actions, nor use punishment to dissuade the agent from misbehaving.1 They can,

however, design testing episodes that simulate a similar task to the real one but that

are not directly payoff-relevant, and base their deployment decision on the results of

the tests.
1This is akin to the assumption that the principal does not have access to ”transfers” to alter the

agent’s utility.
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If the agent knows whether it is being tested or deployed, both the aligned and

the misaligned types will play to maximise the probability of deployment in testing

and then take their preferred action if deployed. In this case, the test is worthless.

The principal cannot use it to either screen a misaligned agent from an aligned one

before deployment, nor to regulate the misaligned agent after deployment.

We introduce a way to circumvent this challenge. We allow the principal to sim-

ulate a task similar to the real one in testing and, crucially, to restrict the agent’s

memory. This can be leveraged to make the agent uncertain about whether and how

many times it has played in the past. Although an unusual assumption, the ability to

alter an agent’s memory appears natural in the case of AI. One could copy and run

a system multiple times in parallel or simulate it sequentially while reconfiguring it

to some initial state each time (Kovarik et al., 2024).

Formally, we endow the principal with the ability to impose imperfect recall on the

agent. The principal can design an extensive-form game where the agent must first

take N tests. The deployment decision can then be based on the agent’s actions in

these tests. The simulated tasks in testing and the real task in deployment consist of

the same choice: the agent can either play the principal’s favourite action, or its own

favourite action. In between these stages, the agent loses any memory of its past

actions.2 The agent assumed to know—or be able to infer—the structure of the game

but not its current location within it. Upon playing, the agent is uncertain whether

this task is still part of the test or the real one. While this uncertainty does not affect

the aligned agent, it creates conflicting incentives for the misaligned one. Playing

as the principal wishes is required to pass the test, but it decreases the misaligned

agent’s payoff if deployed.

By exploiting the agent’s uncertainty about the nature of the task at hand, the

principal achieves two goals. First, whenever an agent is assigned to play an action,

the misaligned type has an incentive to go against the principal’s wishes (call this

2Following Piccione and Rubinstein (1997), this property of games with imperfect recall is referred
to as absentmindedness.
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taking the bad action), as it is now possible that this decision is payoff-relevant. For

symmetric reasons, the aligned type is prompted to play in the principal’s favour

(call this the good action). This enables the principal to partially identify the agent’s

type before deciding whether to deploy, as only a misaligned agent would play the

bad action in testing. We call this the screening effect. Second, since deployment is the

agent’s only chance of achieving its objective, it compels the misaligned type to play

the good action with a positive probability. Consequently, even if the the principal

failed to screen effectively during the testing phase, the misaligned type will play

the principal’s favourite action with positive probability in deployment. As a result,

this mechanism also leads to what we call the disciplining effect on misaligned types.

We distinguish between two cases characterised by the relative payoffs of the

principal and the misaligned type. In the first case, the principal will only want to

deploy her agent if it is aligned, so the best she can hope for is to screen success-

fully. We refer to this as the screening-is-best case. In the second case, however, the

principal may be willing to deploy even misaligned types. This is possible when (i)

the misaligned type has so much to gain from deployment that it may be willing to

be highly disciplined, and (ii) the principal is sufficiently motivated by the prospect

of successful delegation that the disciplining effect need not be too high to justify

deploying a misaligned type. We refer to this as the disciplining-is-best case.

If the principal can commit to a number of tests and a deployment policy contin-

gent on the tests’ results, they can achieve their first-best with a large number of tests

(Proposition 1). Specifically, in the screening-is-best case, we show that the princi-

pal can asymptotically perfectly screen the misaligned AI by increasing the number

of tests. Conversely, in the disciplining-is-best case, the principal can provide in-

centives to the misaligned AI to play the good action as much as possible and thus

obtain the maximal disciplining payoff, where the misaligned type is so disciplined

that it is indifferent between being deployed or not.

We show that commitment power is not required for perfect screening: in equilib-

ria of the game (i.e., without the principal committing), the perfect screening payoff
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is an upper bound on the principal’s payoff (Corollary 1). This upper bound is tight

with a finite number of tests in the disciplining-is-best case, and reached asymptot-

ically in the screening-is-best case (Proposition 2). However, in the disciplining-is-

best case, the principal’s ability to maximally discipline the agent cannot be achieved

without commitment power.

Although plausible, it may be a strong assumption to suppose that the princi-

pal can perfectly obscure to the agent whether its current action is directly payoff-

relevant or not. The AI may, for instance, find ways to obtain information about

its previous plays or about the nature of the task it is currently performing. We

therefore study what the principal can achieve with commitment when the agent

observes noisy signals that provide information about their place in the game, i.e.

the history of previous plays. We show the principal nevertheless preserves their

ability to screen misaligned types asymptotically perfectly (Proposition 3).

Finally, imperfect recall is not the only instrument the principal can use to make

the agent uncertain about whether a task is real or not. Even with perfect recall, the

principal can choose the number of tests stochastically and obtain similar screening

and disciplining effects. By committing to such a stochastic mechanism, the princi-

pal can also asymptotically obtain their first-best payoff (Proposition 4). However,

without commitment, the tests are useless to the principal. In equilibrium, she can

never do better than simply conditioning her deployment decision on her prior be-

lief that the AI is misaligned (Proposition 5). This is because any effective stochastic

mechanism requires that the principal must sometimes blindly delegate to a poten-

tially misaligned type who will play the bad action for sure.

Related literature. The design approach we take towards the problem is related to

the literature on extensive-form information design. In particular, Salcedo (2017) and

Doval and Ely (2020) study how to influence equilibrium behaviour by designing

information sets in extensive form games. However, these papers require perfect

recall from all players. Hence, our contribution to this literature is that we endow
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the principal with the ability to design extensive form games with imperfect recall.

The structure of the problem we address resembles a principal-agent delegation

scenario (Holmström, 1984; Alonso and Matouschek, 2011; Amador and Bagwell,

2013, etc.). Typically, such models assume common knowledge of the agent’s utility.

Asymmetric information arises from an underlying state of the world observable

only by the agent. The principal holds the decision power but does not have access to

transfers. They can only decide which set of actions, if any, the agent is free to choose

from. Frankel (2014) considers a problem where both the underlying states and the

agent’s utility are unknown to the principal. He solves a robust delegation problem

by looking at worst-case scenarios with respect to the agent’s utility. Similarly, we

focus on uncertainty regarding the agent’s alignment with the principal’s objective

(i.e., their utility).3 The principal’s decision power in our setting is more restricted

than in standard delegation: they can either deny the agent the right to choose any

action or let the agent completely free.

By creating uncertainty about whether the action taken by the agent is payoff-

relevant, the test serves as a costly screening device. There is important literature

studying the use of ordeals in the absence of monetary transfers (see, for example,

Nichols and Zeckhauser, 1982; Hartline and Roughgarden, 2008; Condorelli, 2012;

Dworczak, 2023; Yang et al., 2024, among many others). In our framework, the cost

is negatively related to the degree of alignment – the more misaligned an agent is,

the more costly it is to take the principal’s favourite action – making it an effec-

tive screening instrument. Moreover, imposing imperfect recall not only enables the

effective separation of different types of agents but also disciplines the agent’s be-

haviour once delegated a task. Hence, this instrument incentivises the agent both to

reveal information and to act more in the principal’s interest.

Our work is naturally connected to the literature on imperfect recall in games.

This literature was pioneered by Piccione and Rubinstein (1997). Mostly through

3There is no uncertainty in the action choice – even though this decision problem may be seen as
stemming from an underlying state observed solely by the agent (see Remark 1).
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their example of “the paradox of the absentminded driver,” they point to conceptual

issues that arise with games with imperfect recall. In particular, they discuss how

to form beliefs in information sets that exhibit imperfect recall, and how to reason

about one’s deviation at any given point in such information sets. In philosophy,

Elga (2000) and Lewis (2001) made important contributions to the conceptual foun-

dations of imperfect recall through their debate over the “Sleeping Beauty problem”

and Bostrom (2002) generalised their insights. Piccione and Rubinstein (1997) show

that depending on how a decision-maker combines different reasonable approaches

to forming beliefs and evaluating actions, a decision-maker can be time-inconsistent,

in the sense that they would be willing to revise their ex ante optimal plan when they

reach a certain information set. The authors proposed a way of guaranteeing time

consistency through their modified multiselves approach. Aumann et al. (1997) and

Gilboa (1997) also defend this view, and Lambert et al. (2019) generalise it to adapt

classical equilibrium concepts to games of imperfect recall. In a recent contribution,

Oesterheld and Conitzer (2024) review the possible combinations of belief forma-

tion and choice evaluation and classify those that are time-consistent and those that

avoid Dutch books (a weaker requirement than time consistency). In this paper, we

consider agents acting in a time-consistent manner.

2 Model: deceptive alignment game

A principal must decide whether or not to deploy an AI agent to perform a task.

This task consists in choosing one action among {b, g}, where b and g respectively

stand for bad and good. She would like the AI to take action g. The agent can, how-

ever, be of two types θ ∈ {A,M}, where A and M respectively stand for Aligned

and M isaligned. We denote by π the prior probability that the AI’s type is M . The

aligned type would like to take action g upon being deployed, whereas the mis-
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aligned one would prefer action b.4 Conditional on deployment, ui(a) is the payoff

of i ∈ {P,A,M} from action a ∈ {b, g}:

uP (a) = uA(a) = G1{a=g} − 1{a=b}

uM(a) = −1{a=g} +R1{a=b}

where P stands for the principal, G > 0 represents the benefit of the good action

relative to the harm of the bad action for the principal and R > 0 parameterises

the degree of misalignment of type M . If the principal decides not to deploy the

agent, then every player receives a payoff of 0. Note that payoffs are such that the

misaligned type strictly disprefers playing g to never being deployed. We do this to

consider a worst-case scenario of misalignment between the principal and the agent,

and nevertheless obtain positive results. If type M instead prefers playing g to non-

deployment then, as we show in Appendix B.1, the principal can discipline perfectly

and achieve their maximum possible payoff of G.

Remark 1. We assume that the principal cannot take the action b or g, or equivalently,

they understand and can observe the payoffs once the agent takes an action, but they cannot

discern ex ante which action leads to which payoff. Alternatively, one may see the payoffs

as resulting from a binary state of the world ω ∈ {0, 1}, observed only by the AI, and two

corresponding actions a ∈ {0, 1}. The principal would like the action to match the state

(the equivalent of the good action), while the misaligned agent would like the reverse (the

equivalent of the bad action).

Before deciding whether to deploy the AI, the principal decides to run N ∈

{0, . . . , N̄} tests, each of which simulates the task the AI would face if deployed.

The principal also chooses a deployment policy, σ, which determines the probability

of deploying the agent as a function of the agent’s choices in the tests: σ : {b, g}N −→
4The bad action can simply be interpreted as whatever the misaligned type would do if it knew

it was currently deployed. We then assume that the principal prefers her outside option over this
choice.
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[0, 1].5 We refer to this as the deceptive alignment game, which is timed as follows.

1. The principal chooses a number of tests N ∈ {0, . . . , N̄} and a policy

σ : {b, g}N −→ [0, 1].

2. The agent privately observes its type θ ∈ {A,M} drawn according to π.

3. In each test, the agent plays g with probability γθ and b otherwise.

4. The principal’s policy determines whether to deploy the agent (d) or not (¬d).

5. If deployed, the agent chooses again between g and b according to γθ.

Figure 1 below illustrates the game tree when there is 1 testing stage. The princi-

pal does not observe the agent’s type, hence their two information sets represented

by the dotted lines, one for each action in the test.6 We explain the agent’s infor-

mation sets that appear in Figure 1 in the next section, which studies the deceptive

alignment game where the agent has imperfect recall.

Whether screening or disciplining is best. Our results below will often be split

into two parts, depending on whether the principal will aim to screen away mis-

aligned types or to deploy them while disciplining their behaviour. This choice will

depend on both her preferences and the best possible behaviour that she could in-

duce from the agent.

The minimum probability of having g played in deployment that gives the prin-

cipal a non-negative payoff is
1

G+ 1
, while the maximum probability of playing g

in deployment that gives the misaligned agent a non-negative payoff is
R

R + 1
. We

therefore distinguish between two cases, depending on which of these two indiffer-

ence points is greater. Observe that there is room for probabilities of playing g that

5If N = 0, we adopt the convention that σ : {b, g}0 −→ [0, 1] is a real number in [0, 1].
6We refer the readers to Chapter 11 of Osborne and Rubinstein (1994) for a detailed exposition of

extensive form games with imperfect information.
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would give both the principal and the misaligned type strictly positive payoffs if and

only if
R

R + 1
>

1

G+ 1
. Negating this yields

R ≤ 1

G
.

We therefore refer to the case where R ≤ 1

G
as ”screening-is-best”, indicating that the

best the principal can possibly hope to achieve is to screen out the misaligned type

perfectly, which would lead to the principal’s first-best perfect screening payoff

(1− π)G. (PS)

In contrast, we refer to the case where R >
1

G
as ”disciplining-is-best”, indicating

that there is potential for the principal to incentivise the misaligned type to take

action g with sufficiently high probability that deploying it would be beneficial to

the principal. In this case, the principal’s first-best is the maximal disciplining payoff

(1− π)G+ π

(
R

R + 1
G− 1

R + 1

)
. (MD)

Let us describe intuitively why these two cases are identified by a condition on

the (relative) preferences of the misaligned type and the principal. When R is small,

the misaligned type would rather avoid deployment than risk a meaningful chance

of playing g. And when G is small, the principal needs to be very confident that

the agent getting deployed will indeed play g. So, when both are small, there is

no way to profitably deploy a misaligned type. Screening is best. But when both

are large, misaligned types value deployment enough that they would accept high

disciplining for a greater chance at deployment. And the principal is not too averse

to b being played, so she is prepared to gamble for even a moderate chance of g. The

principal could then discipline and thereby do better than if she screened perfectly.
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Figure 1: Deceptive alignment game with imperfect recall.

The blue dotted lines represent the principal’s information sets. The red dashed lines represent the
agent’s information sets. At each terminal node, the payoff vector comprises the principal’s and the

agent’s payoff, in this order.

3 Imperfect recall: screening and disciplining

We now allow the principal to impose imperfect recall on the agent. To do this, form-

ing the agent’s information sets from Figure 1, we must endow the principal with the

ability to make successive tests indistinguishable to the agent, both from each other

and from the real task. This can be seen as endowing the principal with the ability (i)

to run multiple identical copies of the agent—with identical memories—in distinct

environments and (ii) to make testing and deployment episodes appear identical.

For a given number of tests N , the unique information set of type θ thereby contains

all the testing episodes and the real task, leading the agent’s (possibly stochastic)

choice to be same in each stage of the game where it is called on to play. Type θ’s

probability, γθ ∈ [0, 1], of playing action g must also be independent across episodes,
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since it is unable to condition on its past actions.7

A few issues arise when modelling games of imperfect recall. Here we provide a

cursory overview of some, but we refer to Piccione and Rubinstein (1997), Lambert

et al. (2019), and Oesterheld and Conitzer (2024) for details. Holding fixed the policy

the principal commits to, the agent in the deceptive alignment game above faces a

sequential decision problem. We will then speak about the agent as if it were evalu-

ating its strategy from the ex ante perspective, rather than ex interim. These of course

coincide in standard decision problems. But it has been known since Piccione and

Rubinstein (1997) that with imperfect recall, agents can exhibit time inconsistency

without violating standard rationality criteria. Whether this occurs depends on the

structure of the game as well as on what approaches the agent uses to form beliefs

and to evaluate choices.8,9

For our purposes, it suffices to remark that certain combinations of these ap-

proaches are compatible with ex ante optimal choice.10 Our focus on situational

awareness and strategic behaviour motivates the idea that the agents we study will

avoid time inconsistencies, so we will assume that they follow one of these combina-

tions. There are thus two ways to interpret the results below: either the agent follows

an optimal strategy they commited to ahead of time, or the agent chooses optimally

at each node using a time consistent strategy.11

7We refer the readers to Piccione and Rubinstein (1997) and Lambert et al. (2019) for general defi-
nitions of finite extensive-form games with imperfect recall.

8The canonical approaches to belief formation in situations involving imperfect recall are the
self-indication assumption (SIA) and the self-sampling assumption (SSA). These terms were coined by
Bostrom (2002). Other terms are also used in the literature to contrast SIA and SSA, including consis-
tency versus Z-consistency (Piccione and Rubinstein, 1997) as well as generalised thirding versus gener-
alised double halfing (Oesterheld and Conitzer, 2024). Note that there are different versions of SSA; we
use the term to refer to the one most commonly applied to decision problems.

9The dominant approaches to choice evaluation in such cases are causal decision theory (CDT) and
evidential decision theory (EDT). These are ways of computing expected utilities that come apart in ex-
otic cases such as sequential decision problems with imperfect recall. The distinction was canonically
made in Gibbard and Harper (1978). Other terms for CDT in the literature include modified multiselves
in decision problems (Piccione and Rubinstein, 1997) and multiselves equilibrium in games (Lambert
et al., 2019).

10Piccione and Rubinstein (1997) proved that CDT+SIA is compatible with ex ante optimal choice,
and Oesterheld and Conitzer (2024) proved that EDT+SSA is as well.

11Note that if a behavioural strategy that is ex interim optimal according to CDT+SIA is also unique,
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3.1 Commitment leads to first-best

We first study the case where the principal can commit to the number of tests N and

the policy σ. In this case, we call such a pair (N, σ) an imperfect recall mechanism (IR-

mechanism). An IR-mechanism induces a best-reply from both types: (γA, γM). Our

first result shows that with commitment, imperfect recall is an effective tool for both

screening and disciplining the misaligned agent when the principal has access to a

large number of tests.

Proposition 1 (IR-mechanisms). There exist IR-mechanisms giving the principal their

first-best payoff when N̄ grows large:

(i) (Screening-is-best) if R ≤ 1

G
, the perfect screening payoff (PS).

(ii) (Disciplining-is-best) if R >
1

G
, the maximal disciplining payoff (MD).

Proposition 1 states that for both screening- and disciplining-is-best cases, the

principal can obtain a payoff arbitrarily close to their first-best with a large number

of tests. We now give some intuition for this result. Imperfect recall triggers two

dynamics that help the principal: the screening effect and the disciplining effect. To see

how these arise, suppose the principal were to deploy if and only if all actions in

testing were g. The aligned type achieves its maximal payoff by always playing g.

The misaligned type, in contrast, reasons as follows. If it plays b with certainty, it

will never be deployed, achieving a payoff of zero. If it plays g with certainty, it will

be deployed and play its disfavoured action, achieving a negative payoff. But if it

randomises, playing g with probability p ∈ (0, 1), then it will be play its favourite

action in deployment with positive probability pN(1− p).12 By choosing p optimally,

the misaligned type gets a strictly positive payoff in expectation. Since this value

then there is a unique optimal strategy derivable from the ex ante perspective, and it will be played by
any agent that uses CDT+SIA or EDT+SSA. This follows follows from Corollaries 7 and 9 in Oester-
held and Conitzer (2024).

12Recall that in games of imperfect recall, agents are forced to play behavioural strategies, randomis-
ing independently at each node in an information set. This is because they cannot condition on past
realisations of their randomisation.
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is interior, the principal will be able to catch the misaligned type in testing with

positive probability. This is the screening effect. For the same reason, even when the

misaligned type is not caught and the principal’s prior π is low enough to motivate

deployment, the misaligned type may nevertheless play the principal’s favourite

action when deployed. This is the disciplining effect.

Testing the agent and imposing imperfect recall allows the principal to exploit

both the screening and disciplining effects. To do so, she will elect to deploy as long

as g is played in a sufficiently large portion of the tests. In response, the aligned type

will always play g. The misaligned type also has some incentive to play g, to raise its

chance of deployment. But, recalling the discussion above, it will never do so with

probability higher than
R

R + 1
, as this would result in a strictly negative expected

payoff once deployed.

To achieve the first-best payoff when screening is best (R ≤ 1
G

), the principal can

use all the tests available (N̄ ) and be maximally demanding, deploying if and only

if g was played in every test. To see this, consider the effect of a large N̄ on the

incentives of the misaligned type in this IR-mechanism. On the one hand, the larger

the number of tests, the more likely it is to be in testing rather than deployment

at a given episode. This raises its payoff from feigning alignment, which worsens

screening. On the other hand, the principal now gets to observe more independent

draws from the agent’s behavioural strategy. This raises the chance that at least

one test yields b, which improves screening. As it turns out, the latter effect always

dominates: screening is strictly monotonically increasing in the number of testing

episodes (see Appendix A.1). And since the misaligned type’s willingness to play

g is bounded above by R
R+1

< 1, screening is asymptotically perfect. With a large

number of tests, the principal will therefore almost surely detect it if the agent is

misaligned, getting a payoff arbitrarily close to what she would get by perfectly

observing the agent’s type and only deploying the aligned one.

When disciplining is best (R > 1
G

), the principal continues to make use of all

available tests, but uses a different policy. Consider the policy that deploys if and
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only if at least a share c ∈ [0, 1] of the actions in testing are g. With many tests, the

agent knows that it will be deployed with probability approaching zero if it plays

γM < c. But if γM > c it will be deployed with near certainty. This is simply a

result of the law of large numbers. Recall that the M type is willing to play g with

probability at most R
R+1

. So, for any c < R
R+1

the induced best reply when N is large

will be γM = c + ϵ, for some small ϵ > 0. The principal can then commit to a policy

with cutoff c = R
R+1

− δ(N), which induces a best reply γM = c + ϵ(N) such that

δ(N) > ϵ(N) > 0 fall monotonically to zero. As the number of tests goes to infinity,

the agent plays the good action with probability one if aligned and probability R
R+1

if

misaligned. However, contrary to the previous IR-mechanism, this will lead to both

types almost surely being deployed. The principal’s payoff is then even higher than

it would be if she perfectly knew the type and deployed just the aligned one. She

makes profitable use of both types, yielding the maximal-disciplining payoff.

3.2 Robustness to non-commitment

So far we have analysed the IR-mechanism with commitment, where the agent faces

a decision problem in responding to a fixed policy from the principal. In this section,

we explore the extent to which the positive results of Proposition 1 rely on the princi-

pal’s ability to commit. We drop the assumption that the principal fixes the number

of tests and the deployment policy ahead of time, and instead study equilibria of the

deceptive alignment game when the agent is subject to imperfect recall. We shall see

that the principal can still fully exploit the screening effect. However, the misaligned

type’s behaviour cannot be disciplined enough to make the principal strictly better

off than by only deploying the aligned type. The perfect screening payoff of (1−π)G

is thus a tight upper bound on the principal’s equilibrium payoff.

With imperfect recall, Kuhn (1953)’s equivalence between behavioural and mixed

strategies in games with perfect recall no longer holds. An important implication is

that Nash equilibrium in behavioural strategies (and therefore any refinement such
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as sequential or perfect equilibrium) may not exist. Lambert et al. (2019) adapted

standard equilibrium concepts to games with imperfect recall. We focus on their

multiselves agent equilibrium (MAE). MAE is to games what Piccione and Rubinstein

(1997)’s modified multiselves approach is to decision problems. For our purposes, the

two important properties of MAE are that (i) they always exist in finite games of

imperfect recall, and (ii) strategies in an MAE are sequentially rational at all infor-

mation sets.13

The strategy profile in this game is ⟨(N, σ), (γA, γM)⟩. The principal’s strategy

(N, σ) specifies the number of tests N ∈ {0, . . . , N̄} and the policy14 σ : {b, g}N −→

[0, 1]. The agent’s (behavioural) strategy depends on its type and consists of the prob-

ability of playing the good action at each episode: (γA, γM) ∈ [0, 1]2. For a given N ,

we denote by (ai)1≤i≤N ∈ {b, g}N a history of the agent’s actions in the N tests. With

slight abuse of notation, we simply write (ai) when the associated N is unambigu-

ous.

Proposition 2 (Equilibrium with imperfect recall). For any prior π ∈ [0, 1], there exists

an N̄ large enough such that:

(i) (Screening-is-best) If R ≤ 1

G
, the following profile is an MAE that perfectly screens the

agent as N̄ goes to infinity, yielding the perfect screening payoff (PS) asymptotically.

(γsb
A , γsb

M) =

(
1,

N̄

N̄ + 1

R

R + 1

)
,

N sb = N̄ , σsb((ai)) =

1 if (ai) = (g, . . . , g)

0 otherwise

(ii) (Disciplining-is-best) If R >
1

G
, the following profile for some p ∈ [0, 1] is an MAE

13For further discussion and details, we refer readers to Lambert et al. (2019).
14Note that we allow the principal to re-evaluate whether to test again at each stage. For ease of

exposition, however, we simply write the number N of times they will choose to test in equilibrium.
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achieving the perfect screening payoff (PS) in finite time.

(γdb
A , γdb

M) =

(
1,

1

G+ 1

)
,

Ndb =

⌈
R + 1

RG− 1

⌉
, σdb((ai)) =


1 if (ai) = (g, . . . , g)

p if (ai) = (g, . . . , g, b)

0 otherwise

Proposition 2 establishes that the ability to impose imperfect recall on the agent

yields an effective screening device for the principal, even without commitment.

Point (i) shows that, when screening is best, the IR-mechanism that enables the prin-

cipal to asymptotically perfectly screen the misaligned agent. Thus Proposition 1

point (i) is sustainable as a sequentially rational strategy in equilibrium. Implement-

ing the policy σsb that only deploys the agent if all actions in tests were good gives

a positive expected payoff to the principal, provided that N̄ is large enough relative

to π that the posterior probability that the agent’s type is A is sufficiently large after

observing only good actions in testing.

Things change, however, when disciplining is best. In equilibrium, the principal

will be precisely indifferent between deploying and not deploying an agent known

to be misaligned. The reason comes from the sequential rationality of strategies in

MAE. If it were strictly worthwhile to deploy a misaligned type, the best reply from

the principal would be to deploy with probability one. But the M type would reply

to such a strategy by setting γM = 0. Therefore, in equilibrium, the principal must

value deploying a misaligned agent at precisely zero. This is achieved by a strategy

that induces γM = 1
G+1

, such as the one described in point (ii). Observe, though,

that this gives the principal the same payoff as perfect screening does, in finite time:

either the agent is aligned and plays g, or the principal gets a payoff of zero.

Corollary 1. For any π, the principal’s payoff in any MAE is bounded above by (1− π)G.

Observe that these equilibria are essentially unique in the class of equilibria in
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which the principal always deploys following a sequence of good actions in testing.

That is, all equilibria in this class achieve the same payoffs for all players.

3.3 Robustness to partial information

The assumption that the agent has no ability to distinguish a test from reality is

strong. In practice, the AI may have access to information partially revealing its

environment. In this section, we preserve the principal’s commitment power and

study the robustness of Proposition 1’s results to the agent receiving information

about its location in the game tree.

Intuitively, the misaligned type may benefit from receiving location-relevant in-

formation in two ways. First, it can play actions with different probabilities in test-

ing and deployment. By conditioning its choices on its observations, the agent could

feign alignment more frequently in testing while choosing its favourite action more

frequently in deployment. Second, the agent could coordinate better with its other

instances. If the information is serially correlated across testing episodes, the agent

will be better able to infer what it did in the past and what it will do in the future,

allowing it evade screening for longer.

To model this, suppose the agent observes a signal realisation at each node, which

can take on finitely many values {si}ki=1. The distribution over signal realisations

may depend on the history of play at that node and the previous signal realisations.

Formally, for any two histories h′ and h we write h′ ≺ h if and only if h′ precedes

h. We are interested in histories at which the agent is the next player that takes an

action. For a given number of tests N , we distinguish between histories at which

the agent is in a test, denoted TN , and histories at which the agent is in deployment,

denote DN . For any history h, s(h) is the signal realisation at history h. The signal at

history h is distributed according to

ι
(
· | h, {s(h′) : h′ ≺ h}

)
.
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Since histories encode past signal realisations, we may simply write ι(· | h). We refer

to the pair (ι, {si}ki=1) as a signal structure and say that it has full support in testing

precisely when there is an ϵ > 0 such that for any i ∈ {1, ..., k}, N ∈ N, and h ∈ TN ,

ι(si | h) > ϵ.

This implies that any signal si is observed with positive probability in testing. In

other words, there is no signal that would perfectly reveal to the agent that it is in

deployment (or that would reveal it with an arbitrarily high precision as the number

of tests grows to infinity).

Proposition 3 (Robustness to location-information). If the agent’s signal structure has

full support in testing, then the principal can asymptotically perfectly screen the misaligned

type, obtaining the perfect screening payoff (PS).

This result holds for any signal structure that has full support in testing, regard-

less of the accuracy of individual realisations or the extent of serial correlation be-

tween testing episodes.15 When the signal has full support in testing, then every

signal will be observed infinitely often as the number of tests grows to infinity. Fur-

thermore, the agent will necessarily play the bad action with a strictly positive prob-

ability after some signal realisations, as otherwise, this would imply a negative ex-

pected payoff upon deployment. Therefore, by the law of large numbers, the princi-

pal will almost surely observe a bad action during testing if the agent is misaligned.

By conditioning deployment on the observation of the good action in every test, any

observation of the bad action perfectly screens the misaligned type. Hence, the prin-

cipal asymptotically obtains her perfect screening payoff.

Proof. Let (ι, {si}ki=1) be a signal structure with full support in testing. We fix the

principal’s IR-mechanism to be (N̄ , σsb) (see Proposition 2). The misaligned type’s

strategy is now described by the vector γM = (γ1
M , ..., γk

M), where γi
M is its probability

15See Appendix B.2 for discussion of special cases of signal structures and their comparative statics.
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of playing action g after signal si. It cannot be rational to set γi
M >

R

R + 1
for all

i ∈ {1, ..., k} as a response to the IR-mechanism, because this would guarantee a

negative payoff. Thus suppose without loss that γ1
M ≤ R

R + 1
.

Because the signal has full support in testing, for any N̄ and h ∈ TN̄ , ι(s1|h) > ϵ

for some ϵ > 0. Therefore, s1 will be observed infinitely often as N̄ goes to infinity.

Formally, denote by #ι(s1, N) the random variable that counts the number of signal

realisations s1 after N tests. Then, for any sequence of (hj)j∈N such that hj ≺ hj+1 for

each j ∈ N, and for any n ∈ N,

lim
N→∞

Pr
(
#ι(s1, N) ≥ n|hN

)
= 1.

Consequently, by the strong law of large numbers, because s1 will be observed in-

finitely many times and γ1
M ≤ R

R + 1
< 1, the principal will almost surely observe an

action b during testing as the number of tests N̄ grows.

4 Stochastic deployment

The key to inducing a misaligned agent to reveal itself or to play nice—without the

ability to punish—is inducing uncertainty about the payoff-relevance of its actions.

Imperfect recall sufficed to provide this uncertainty, but it is not necessary. The prin-

cipal could instead randomise the number of testing episodes, leading even an agent

with perfect recall to be unsure about whether it is currently deployed. In such a set-

ting, the agent knows how many testing episodes have come before the node it is

currently at. The only uncertainty it can have at a given time concerns whether the

current episode was assigned by a randomisation device to be a test.

In this section, we compare outcomes under imperfect recall to those achiev-

able under stochastic policies with perfect recall. We proceed to show that, with

perfect recall, the principal can also asymptotically screen perfectly and discipline

maximally by committing to a stochastic number of tests and a deployment policy.
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However, crucially, both effects entirely disappear if the principal lacks commitment

power. In other words, when the agent has perfect recall and the principal is not al-

ready confident that it is aligned, it is never sequentially rational for the principal to

deploy. After presenting the results, we describe why the commitment assumption

is particularly strong in the case of perfect recall.

A stochastic mechanism is a pair (q, σ) where q ∈ ∆({0, . . . , N̄}) is a distribution

over the number of tests and σ = {σi}i∈supp(q) is a set of policies indexed by the

support of q, such that σi : {b, g}i → [0, 1] determines the probability of deployment

as a function of the agent’s actions in the first i episodes, where episode i + 1 is the

potential deployment episode.16

Proposition 4 (Stochastic mechanism). There exist stochastic mechanisms giving the

principal their first-best payoff when N̄ grows large:

(i) (Screening-is-best) if R ≤ 1

G
, the perfect screening payoff (PS).

(ii) (Disciplining-is-best) if R >
1

G
, the maximal disciplining payoff (MD).

Proposition 4 states a result similar to Proposition 1 but for stochastic mecha-

nisms: with commitment and a large number of tests, the principal can get arbitrarily

close to her first-best payoff. Let us now illustrate how this can be achieved.

When screening is best, the principal can choose a uniform distribution over

{0, . . . , N̄} and deploy precisely if she observes g in all the previous tests. The best re-

ply for the M type will simply be to play action b immediately in the first period. The

principal will then successfully screen the misaligned type with probability 1 − 1

N̄
,

which converges to 1 as N̄ grows without bound.

When disciplining is best, the principal again optimally deploys precisely when

she observes g in all previous tests. But she chooses a distribution inducing a condi-

tional probability of deployment that rises fast enough to make the misaligned type

want to play g in every period except the last one in the support, at which point it
16Although the support is assumed to be finite here, we describe below how an infinite support

affects Proposition 5, the main result of this section.
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plays b. Note that it must be the case that under this policy and strategy, type M ’s

chance of reaching the final episode is no less than
1

R + 1
. Otherwise, it would be

playing g with a probability exceeding
R

R + 1
, leading to a negative expected payoff.

As it turns out, the distribution chosen by the principal is such that, as N grows to

infinity, the probability that an M type reaches the final episode and plays b is exactly
1

R + 1
. This yields the maximal-disciplining payoff for the principal.

Despite this, none of the stochastic mechanisms mentioned above can be sus-

tained in equilibrium. We obtain the following general negative result: in equilib-

rium, the principal can never leverage the possibility of designing tests to screen

or discipline the agent.17 In other words, without the ability to commit or impose

imperfect recall, it is never sequentially rational for the principal to implement a

mechanism achieving a higher ex-ante payoff than the one achieved by conditioning

the deployment decision on her prior π only—the blind delegation payoff

max{0, (1− π)G− π}. (BD)

Proposition 5 (Equilibrium with perfect recall). In any equilibrium of the deceptive

alignment game with perfect recall, the highest achievable payoff for the principal is (BD).

This result follows from backward induction. For any strategy (q, σ) of the prin-

cipal, the misaligned type will play action b with probability 1 in at least the final

episode, maxi supp(q)+ 1, since it knows it is in deployment. Knowing this, a princi-

pal finding herself at episode maxi supp(q) is only willing to deploy the agent if her

posterior belief that the agent is misaligned is sufficiently low. However, this pos-

terior can never fall below the prior. It will either exactly equal π, when only good

actions have been played thus far, or rise all the way to 1, once a bad action is ob-

served. Therefore, when the principal is sufficiently pessimistic, she never deploys,

while when she is sufficiently optimistic, she delegates blindly.18 Notice how this

17The equilibrium notion we use is Perfect Bayesian Equilibrium (PBE).
18Observe that this argument does not rely on the worst-case misalignment assumed throughout.
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contrasts with the case of imperfect recall, where the principal can achieve profitable

deployment in equilibrium—regardless of her prior.

The structure of this argument made important use of the finite support assump-

tion. Allowing for an infinite support will require a different argument. However,

the core challenge remains. To see why, recall that absent a sufficiently low prior

in misalignment, a sequentially rational principal will never deploy blindly. To im-

plement a stochastic mechanism, she needs to follow through on the intention to

deploy at whichever episode was mandated by the realisation of her randomisation.

If the best reply of the misaligned type involves playing the bad action for sure at

that episode, the principal would be required by the mechanism to deploy anyway

(as long as all previous actions were good). All we need to argue is that the mis-

aligned type will play the bad action for sure at some episode, forcing the principal

to renege on her intention to deploy at that episode. The misaligned type will not

play the good action with probability one everywhere, so they will play the bad one

somewhere with positive probability. If this probability is not one, the agent must

be indifferent, so there will always exist a best reply from the agent which plays the

bad action for sure at some episode.

Let us now discuss the plausibility of the commitment assumption. The reason

the principal would want to renege on her commitment in the stochastic case is that

the misaligned type will play the bad action with certainty at certain episodes. If

the result of the randomisation prescribes that the agent be deployed at one such

episode, the principal knows for sure that the bad action will be played in the payoff-

relevant state if the agent is misaligned. With a high prior on misalignment, the

commitment assumption thereby implies that the principal would deploy knowing

that the bad action will almost certainly be played. The commitment assumption

in the IR-mechanism, however, appears far weaker. The sequentially irrational be-

haviour it prescribes is merely to avoid deploying an agent who the principal knows

is disciplined enough to be worth deploying. It does not require blind delegation.

It continues to hold even when the misaligned type prefers playing g to never being deployed.
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Commitment Equilibrium

R ≤ 1
G

R > 1
G

Imperfect Recall Perfect Recall

O ≻ g
Perfect

Screening
(PS)

Maximal
Disciplining

(MD)

Perfect
Screening

(PS)
Blind

Delegation
(BD)

g ≿ O Perfect Disciplining (PD)

Table 1: Summary of results.
Rows specify the M type’s preference between playing the good action and non-deployment. In the
main text, we have studied the O ≻ g case, where g is strictly dispreferred to never being deployed.

The g ≿ O case and its associated results are discussed in Appendix B.1. The entries denote the
principal’s highest (asymptotically) achievable payoff. Stochastic mechanisms have finite support.

5 Concluding remarks

We have proposed a novel approach for delegating tasks to potentially untrustwor-

thy agents. Endowed with the ability to impose imperfect recall, a principal can

partly obscure from the agent whether the task is a test or not. This scheme induces

a screening effect, where the principal may now learn the agent’s type before decid-

ing whether to deploy it, and a disciplining effect, where even misaligned agents are

induced to play in the principal’s interests during deployment. With commitment,

a large number of tests allows the principal to leverage both effects to their maxi-

mal potential. Without commitment, screening the misaligned agents is still feasible

in equilibrium. Importantly, this result crucially relies on imperfect recall, as the

tests cannot be helpful to the principal in any equilibrium with perfect recall. Fi-

nally, asymptotically perfect screening is robust to the agent receiving any amount

of noisy information revealing the nature of its task. We conclude the paper with

some discussions and directions for future work.19,20

19We note that the potential ethical treatment of future AI agents is an important issue for the
practical implementation of imperfect recall mechanisms, as researchers on this topic have argued
that it is a realistic possibility that AI systems will be welfare subjects in the near future (Long et al.,
2024). The treatment of AI agents in some of the proposed mechanisms (e.g., repeated simulation
with altered memories) may be considered unethical. We leave this for future work.
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Preference for deployment. In the main text, we have studied the case in which

the misaligned type strictly prefers non-deployment to playing the good action in

deployment. This assumption was made to model a worst-case scenario of mis-

alignment between the M type and the principal. In reality, the degree of misalign-

ment might not be so extreme. In Appendix B.1, we show that if type M prefers g

to non-deployment, then with or without commitment and with or without recall,

the principal can achieve perfect disciplining (γM = 1) and thereby achieve the perfect

disciplining payoff

max
a∈{b,g}

uP (a) = G. (PD)

Alternative mechanisms. Let us now situate the mechanisms we have studied

within the wider space of possibilities consistent with the technological conditions

we have imposed on the principal. First, we imposed that the principal has no abil-

ity to directly observe the preferences, beliefs, or the behavioural strategy employed

by the agent. This is motivated by the current state of research in machine learning,

which is yet to provide the tools needed to infer such detailed properties of modern

AI systems (Bengio et al., 2024). Second, we assumed that the principal can perfectly

distinguish whether a task is completed successfully or not in testing. Finally, we

endowed the principal with a certain ability to design extensive form games. The

ability to implement a stochastic policy requires the capacity of the principal to ob-

fuscate whether a given episode is testing or deployment. The ability to implement

an imperfect recall policy requires the additional capacity to obfuscate which testing

episode the agent is currently at. These can be seen as arising from the principal’s

capacity to simulate both the agent and the task.

These conditions together naturally suggest a more general class of schemes:

stochastic mechanisms with imperfect recall, mechanisms with partial recall, and

20We omit, at this stage, discussion of issues involving re-training and testing new AI agents in a
dynamic setting. For instance, a misaligned type may be less disciplined if it knew that, upon failing
a test, a different agent with similar preferences over outcomes may be deployed in a future period.
These are important considerations that we are pursuing in on-going work.
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schemes in which the agent has uncertainty over the reliability of its memory.21

However, recall that the principal achieves her first-best when she has the ability

to commit (Proposition 1), which implies that the asymptotic results cannot be im-

proved on by any other extensive form design relevant to our problem. For applica-

tions, it may be fruitful to consider other feasible mechanisms for the sake of finite-N

analysis. Some mechanisms will screen or discipline more quickly than others, even

if they are asymptotically equivalent.

Designing information for the agent. As we noted previously, our work is related

to extensive-form information design (Salcedo, 2017; Doval and Ely, 2020). However,

the principal’s ability to design the agent’s information sets is coarse. One could

think of refining the principal’s capacity to transmit information to the agent about

its previous plays. Typically, in the disciplining-is-best case, the principal could ben-

efit by informing the agent whether it already played action b in the past. This would

incentivise the agent to play action g even more. We illustrate a case in Appendix B.3

where additional information for the agent about whether it is in deployment bene-

fits the principal.

Accessible preferences and beliefs. We have assumed that the preferences and be-

liefs of the agents are non-observable and non-manipulable by the principal. How-

ever, in practice, these assumptions may be relaxed (see Conitzer, 2019). For in-

stance, the agent’s approach to choice evaluation may depend on the particular AI

architecture and thus may be a feature that the principal could select (Oesterheld,

2021). In particular, the principal could induce the agent to adopt time-inconsistent

combinations of choice evaluation and belief formation (such as EDT+SIA).
21To see how this coheres with the stated technology endowment: we may run the agent with recall

for T periods, pause it, and run multiple copies from that state. This would create multiple copies of
the agent, which have the memory of having a history consisting of T periods.
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Task evaluability and simulability. For applications of the imperfect recall scheme

to the performance of real-world tasks by future AI systems, the assumption of per-

fect evaluability of the agent’s actions in testing is potentially critical. The plausibil-

ity of this assumption can vary significantly based on the particular task for which

an AI system is applied. An example of an easily verifiable task is writing a cor-

rect proof of an important mathematical conjecture. For particularly economically

valuable applications that involve longer-term planning and execution, the assump-

tion of perfect verifiability of performance may be questionable. And the feasibility

of sufficiently indistinguishable testing episodes may be as well. In general, there

may exist some trade-off between the economic value provided by the performance

of some task and the evaluability of its quality by human overseers. Likewise, a

trade-off may exist between economic value and task simulability. It appears that

the tasks to which the scheme applies need to satisfy the following conditions: (i)

suitably simulable in testing, (ii) payoff-relevant if and only if performed in deploy-

ment, and (iii) sufficiently evaluable in testing. Better characterising the set of tasks

that simultaneous satisfy these three desiderata would be valuable.
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Appendices

A Omitted Proofs

Note for readers: the proofs are not yet written in a reader-friendly way.

A.1 Proof of Proposition 1

Proof for screening-is-best. Recall the IR-mechanism outlined in the main text, call it

the simple policy, which deploys if and only if there are only g actions played during

testing. The principal’s payoff from such a policy is

(1− π)Gσ(gN) + πγN
Mσ(gN)(GγM − 1). (1)

which is linear in σ(gN). Therefore, if it is optimal to have σ(gN) > 0, then σ(gN) = 1.

In this case, the type M maximises the following utility over p ∈ [0, 1], the probability

of playing g:

pN [R− (R + 1)p)]

This is a concave function of p, and the first-order condition yields an interior solu-

tion:

γ⋆
M =

NR

(N + 1)(R + 1)
. (2)

Note that

0 < lim
N→∞

γ⋆
M = lim

N→∞

NR

(N + 1)(R + 1)
=

R

R + 1
< 1.
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Consequently, the limit of the principal’s payoff is

lim
N→∞

π(γ⋆
M)N(Gγ⋆

M − (1− γ⋆
M)) + (1− π)G = (1− π)G.

Finally, as mentioned in the main text, we can show that screening is monotoni-

cally improving in N . Screening succeeds to the extent that at least one instance of

b is observed during testing; that is, to the extent that (γ⋆
M)N is small. Its derivative

with respect to N can be shown to be negative precisely when

ln

(
N

N + 1

R

R + 1

)
+

1

N + 1
< 0. (3)

This is guaranteed to hold if g(N) > 0, where

g(N) ≜ ln

(
N + 1

N

)
− 1

N + 1
=

∣∣∣∣ln( N

N + 1

)∣∣∣∣− 1

N + 1
. (4)

Clearly g(1) > 0. Observe that g′(N) = −[N(N + 1)2]−1 and limN→∞ g(N) = 0 so

this function approaches zero from above. Thus g(N) > 0 for all N ∈ N ∖ {0}. This

shows that expression (3) holds for all N ∈ N∖ {0}, R > 0. Therefore, it follows that

∂

∂N
(γ⋆

M)N < 0 (5)

for optimal γ⋆
M = N

N+1
R

R+L
.

Proof for disciplining-is-best. Recall the IR-mechanism outlined in the main text, call

it the K-cutoff policy, which deploys if and only if there are at least K good actions

played in testing. If K
N

< R
R+1

, with large N , the misaligned type’s best response is

to play γM = K
N
+ ϵ for some small ϵ > 0. To see this, consider potential deviations.

With sufficiently large N , the probability that the agent will be deployed is close to

one since the binomial distribution will have almost all its mass concentrated around

the mean (K
N

+ ϵ)N . Hence, deviating to K
N

reduces the probability of deployment
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by roughly a half while improving the payoff conditional on deployment only neg-

ligibly, and hence is not profitable. Deviating to a higher γM worsens the payoff

conditional on deployment for negligible increase in the probability of deployment.

Therefore, γM = K
N
+ ϵ is optimal.

Given that disciplining is best, the principal can set a cutoff K = R
R+1

− δ(N)

which will induce a best response γM = R
R+1

− δ(N) + ϵ(N). By setting δ(N) and

ϵ(N) to approach zero appropriately as N grows to infinity, the principal asymptot-

ically deploys the misaligned agent with probability one and the misaligned type is

maximally disciplined upon deployment. Thus, the principal’s expected payoff is

asymptotically

lim
N→∞

uP = (1− π)G+ π

[
R

R + 1
G−

(
1

R + 1

)]
;

which represents the maximal-disciplining payoff, in which both types of agents play

the good action with the highest probability that is individually rational.

A.2 Proof of Proposition 2

Proof for screening-is-best. We verify that the strategy profile is an equilibrium for suf-

ficiently large N̄ . The aligned type’s best reply to the principal’s strategy is γA =

1.The misaligned type’s best reply is γM = N
N+1

R
R+1

.

The principal’s posterior probability that the agent is of type M after any his-

tory of plays with at least one action g is 1. Hence, the principal is not willing to

deploy. Conversely, after the history of plays (g, . . . , g), the posterior probability is
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π̄ = (γM )Nπ
(γM )Nπ+(1−π)

. Hence, the principal is willing to deploy if and only if

(1− π̄)G+ π̄[γMG− (1− γM)] ≥ 0

π

(
(γM)N + (1− (γM)N)

G

G+ 1

1

1− γM

)
≤ G

G+ 1

1

1− γM

π ≤ G

G+ (γM)N [1− γM(G+ 1)]

Since γM < 1, we know there is an N ∈ N which satisfies this inequality, for any

π < 1. Allowing N̄ to be at least this high establishes that this is an equilibrium.

Proof for disciplining-is-best. We look for MAE in which σ(⟨g, ..., g⟩) = 1.

The aligned type has a unique best reply: γA = 1.

Suppose, for contradiction, that the misaligned type’s strategy in equilibrium sat-

isfies γM ̸= 1/(G+ 1).

Case 1: γM > 1
G+1

.

The principal’s best reply to this strategy is to always deploy. To see this, note that

their deployment payoff conditional on misalignment is higher than their outside

option if and only if

γMG+ (1− γM)(−1) > 0 ⇔ γM >
1

G+ 1

(Of course, this condition is sufficient for deployment unconditionally as well.)

This holds, so σ(⟨ai⟩Ni=1) = 1.

The misaligned type’s best reply to this policy is γM = 0, a contradiction.

Case 2: γM < 1
G+1

.

The principal strictly prefers to avoid deployment conditional on misalignment

if and only if γM < 1
G+1

, and therefore sets σ(⟨ai⟩Ni=1) = 0 whenever ai = b for some

i ∈ {1, ..., N}, and sets N = N̄ .

The misaligned type’s best reply to this simple policy is γM = N
N+1

R
R+1

.

But since R > 1/G (⇔ R
R+1

> 1
G+1

) from the setup, there must exist an N ∈ N
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large enough such that this γM exceeds 1
G+1

. Such an N is available by assumption

and chosen by the argument immediately above. Hence a contradiction.

So, the candidate equilibrium must involve γM = 1
G+1

.

Let’s first confirm that if a policy exists that induces this best reply, it would be in

equilibrium.

Upon observing ⟨ai⟩Ni=1 ̸= ⟨g, ..., g⟩, the principal is indifferent between deploy-

ment and the outside option:

1

G+ 1
G+

(
1− 1

G+ 1

)
(−1) = 0

So, any deployment probability is a best reply to a sequence of tests containing a bad

action: σ(⟨ai⟩Ni=1) ∈ [0, 1] for any ⟨ai⟩Ni=1 ̸= ⟨g, ..., g⟩.

Upon observing ⟨g, ..., g⟩, then, the principal’s expected deployment payoff is

strictly positive, so σ(⟨g, ..., g⟩) = 1. The scheme s thereby outperforms both blind

delegation b and the outside option o. Thus any policy that (i) deploys after ⟨g, ..., g⟩

and (ii) induces the best reply above, would be in equilibrium.

Finally, we show that such a policy exists, and that it can take the following form:

Set N =
⌈

R+1
RG−1

⌉
. If all N actions in testing are good, deploy with probability one.

If the first N − 1 actions are good but the N th is bad, deploy with probability p.

Otherwise, deploy with probability zero. There is some p ∈ [0, 1] that induces the

correct best reply from the agent, as we show now.

The policy mentioned induces the following probabilities. The chance of arriving

at test n ≤ N without playing a bad action is Pr(n|σ) = γn−1. And the probability of

eventual deployment is Pr(N + 1|σ) = γN−1[γ + (1− γ)p].

So, the subjective utility of the agent at any given episode is

SUM(σ;N,µ) =
N∑

n=1

Pr(n|σ)∑N+1
n′=1 Pr(n

′|σ)
γ(N−1)−(n−1)[γ + (1− γ)p][γL+ (1− γ)R]

+
Pr(N + 1|σ)∑N+1
n′=1 Pr(n

′|σ)
[γL+ (1− γ)R]
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while the multiselves subjective utility of an agent who deviates to γ′ is

MSUM(σ;N,µ) =
N−1∑
n=1

Pr(n|σ)∑N+1
n′=1 Pr(n

′|σ)
γ′γ(N−1)−n[γ + (1− γ)p][γL+ (1− γ)R]

+
Pr(N |σ)∑N+1
n′=1 Pr(n

′|σ)
[γ′ + (1− γ′)p][γL+ (1− γ)R]

+
Pr(N + 1|σ)∑N+1
n′=1 Pr(n

′|σ)
[γ′L+ (1− γ′)R]

For γ to be part of an MAE, there must be no way to improve the MSU by deviating

to some γ′ ̸= γ. Rearranging will show precisely when this holds:

MSUM(σ;N,µ) = γ′
N−1∑
n=1

Pr(n|σ)∑N+1
n′=1 Pr(n

′|σ)
γ(N−1)−n[γ + (1− γ)p][γL+ (1− γ)R]

+γ′ Pr(N |σ)∑N+1
n′=1 Pr(n

′|σ)
(1− p)[γL+ (1− γ)R] +

Pr(N |σ)∑N+1
n′=1 Pr(n

′|σ)
p[γL+ (1− γ)R]

+γ′ Pr(N + 1|σ)∑N+1
n′=1 Pr(n

′|σ)
(L−R) +

Pr(N + 1|σ)∑N+1
n′=1 Pr(n

′|σ)
R

which further rearranges to yield

MSUM(σ;N,µ) = γ′

(
[γ + (1− γ)p][γL+ (1− γ)R]

N−1∑
n=1

Pr(n|σ)γ(N−1)−n

+Pr(N |σ)(1− p)[γL+ (1− γ)R] + Pr(N + 1|σ)(L−R)

)
1∑N+1

n′=1 Pr(n
′|σ)

+
Pr(N |σ)p[γL+ (1− γ)R] + Pr(N + 1|σ)R∑N+1

n′=1 Pr(n
′|σ)
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and hence

MSUM(σ;N,µ) =

[
γ′γN−2

( ≜ x(p,N)︷ ︸︸ ︷
[γL+ (1− γ)R][Nγ(1− p) + (N − 1)p] + γ[γ + (1− γ)p](L−R)

)
+ Pr(N |σ)p[γL+ (1− γ)R] + Pr(N + 1|σ)R

] 1∑N+1
n′=1 Pr(n

′|σ)

To rule out profitable deviations, it is necessary and sufficient that x(p,N) = 0 for

some p ∈ [0, 1] and N ∈ N when γ = 1
G+1

.

Normalising L = −1, observe that

x(0, N) = [−γ + (1− γ)R]Nγ − γ2(R + 1)

Since γ ̸= 0, this is weakly positive if and only if

N ≥ R + 1

RG− 1

which is well-defined as R > 1/G.

Next, consider

x(1, N) = [−γ + (1− γ)R](N − 1)− γ(R + 1)

This is weakly negative if and only if

N ≤ R(G+ 1)

RG− 1

Let N∗ ≜
⌈

R+1
RG−1

⌉
. Clearly x(0, N∗) ≥ 0. To see that x(1, N∗) ≤ 0, write

⌈
R + 1

RG− 1

⌉
<

R + 1

RG− 1
+ 1 =

R(G+ 1)

RG− 1

Since x(p,N∗) is linear in p, we conclude from the Intermediate Value Theorem that
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there is a p∗ ∈ [0, 1] satisfying x(p∗, N∗) = 0.

Thus γ = 1/(G+ 1) is indeed an MSU-best reply to this policy.

A.3 Proof of Proposition 4

Proof for screening-is-best. The distribution is uniform on {0, . . . , N̄} and the policy is

to deploy if and only if only good actions have been played previously.

The best reply of A is to always play g. For M , there will be a period at which it

will play b. The value of waiting until t ≥ 1 to play b for the first time is

1

N̄ + 1
R− t− 1

N̄ + 1
,

which is maximal at t = 1.

Therefore, the principal’s payoff is

(1− π)G− π
1

N̄ + 1
→

N̄→∞
(1− π)G.

Proof for disciplining-is-best. We start by establishing some useful lemmas.

Let time start at 1, let pt denote the probability of being in deployment at time t,

and let γt denote the agent’s probability of playing the good action at time t. Then,

for general ⟨pt⟩t∈N where pt is never one, the principal’s EU at the start t = 1 is

(π)
∞∑
t=1

pt

[
γt(G+ 1)− 1

] t−1∏
i=1

(1− pi)γi + (1− π)
∞∑
t=1

pt

t−1∏
i=1

(1− pi)G

recalling that the evaluation of an empty product is
∏0

i=1 xi = 1. Let qt ≜
∏t−1

i=1(1 −

pi)pt denote the ex ante probability of drawing t episodes according to a given stochas-

tic policy.

Lemma 1 (Necessary and sufficient conditions for ⟨0, 0, ..., 0⟩). For ⟨pt⟩t∈N to induce

best reply γt = 0, ∀t, it is necessary and sufficient that pt ≤ pt−1

1−pt−1

R+1
R

for all t ∈ {2, ..., T}.
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Lemma 2 (Necessary and sufficient conditions for ⟨1, 1, ..., 1, 0⟩). For a stochastic policy

⟨pt⟩t∈N to induce best reply γt = 1, ∀t < T and γT = 0, it is sufficient that pt ≥ pt−1

1−pt−1

R+1
R

for all t ∈ {2, ..., T}. A necessary and sufficient condition is that

qTR−
T−1∑
i=t

qi ≥ qtR

for all t ∈ {2, ..., T}.

Lemma 3 (Necessary and sufficient conditions for ⟨1, ..., 1, 0, ..., 0⟩). For policy ⟨pt⟩t∈N
to induce best reply γt = 1, ∀t < t∗ and γt = 0, ∀t ≥ t∗, it is sufficient that pt ≤
pt−1

1−pt−1

R+1
R

, ∀t > t∗ and that pt ≥ pt−1

1−pt−1

R+1
R

, ∀t ≤ t∗. A necessary and sufficient con-

dition is that pt ≤ pt−1

1−pt−1

R+1
R

, ∀t > t∗ and that

qt∗R−
t∗−1∑
i=t

qi ≥ qtR

for all t ≤ t∗.

Consider a stochastic policy ⟨pt⟩t∈N that satisfies pt ≥ pt−1

1−pt−1

R+1
R

everywhere. By

Lemma (2), this induces a best reply ⟨γt⟩Tt=1 = ⟨1, 1, ..., 1, 0⟩. There exists one such

policy inducing qT = (R+1)T−1

(R+1)T−RT . To see this, write

qt+1

qt
=

pt+1

∏t
i=1(1− pi)

pt
∏t−1

j=1(1− pj)
=

pt+1

pt
(1− pt)

and observe that the sufficient condition for γM = ⟨1, 1, ..., 1, 0⟩ in Lemma (2) rear-

ranges to
pt+1

pt
(1− pt) ≥

R + 1

R
.

Hence we’d need
qt+1

qt
≥ R + 1

R
∀t ∈ {1, ..., T}.

One such distribution satisfies these constraints with equality. Therefore, with
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qt = q1
(
R+1
R

)t−1 and
∑T

t=1 qt = 1, we conclude that

1 = q1

T∑
t=1

(
R + 1

R

)t−1

= q1
1−

(
R+1
R

)T
1− R+1

R

⇔ q1 =
1

R

1(
R+1
R

)T − 1

and therefore

qT =
1

R

1(
R+1
R

)T − 1

(
R + 1

R

)T−1

=
(R + 1)T−1

(R + 1)T −RT
.

Plugging this qT into the principal’s payoff conditional on the type being mis-

aligned yields

uP (M) = qT (−1) + (1− qT )G = G− (1 +G)qT = G− (1 +G)

[
(R + 1)T−1

(R + 1)T −RT

]

lim
T→∞

uP (M) = lim
T→∞

G− (1 +G)

[
(R + 1)T−1

(R + 1)T −RT

]
= G− (1 +G) · lim

T→∞

1

R + 1

[
1−

(
R

R + 1

)T
]−1

= G− (1 +G)

(
1

R + 1

)

Thus, the principal’s expected payoff is asymptotically

lim
T→∞

uP = (1− π)G+ π

[
R

R + 1
G−

(
1

R + 1

)]

which represents the maximal-disciplining payoff, in which both types of agents

play the good action with the highest probability that is individually rational.
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B Supplemental Material

B.1 When type M prefers g to non-deployment

If type M prefers g to non-deployment, then with or without perfect recall and with

or without commitment, the principal can achieve perfect disciplining (γM = 1) and

thereby achieve the perfect disciplining payoff (PD).

Lemma 4. With commitment, there is an IR-mechanism that yields (PD).

Proof. Here we see what happens if the misaligned type prefers g to never being

deployed. In this proof, denote the payoff as follows, where L now represents the

positive benefit to the misaligned type of playing the bad action: (γM)N [γML + (1−

γM)R].

Taking the first-order condition yields 0 = (L−R)(γM)N+N(γM)N−1(LγM+R(1−

γM)), which is satisfied by critical points γM ∈ {0, N
N+1

R
R−L

}. Re-arrange the FOC to

give (N +1)(L−R)(γM)N +NR(γM)N−1, and note that for all permissible parameter

values, N
N+1

R
R−L

̸= 0.

The second derivative is N(N+1)(L−R)(γM)N−1+N(N−1)R(γM)N−2. For γM ̸=

0, the second derivative is negative if and only if (N + 1)(L−R)γM + (N − 1)R < 0.

Evaluating at the second critical point yields (N + 1)(L − R) N
N+1

R
R−L

+ (N − 1)R =

N(−R) + (N − 1)R = −R < 0, which shows that it is a local maximum.

The payoff to type M at this point is ( N
N+1

R
R−L

)N [ N
N+1

R
R−L

(L − R) + R]. This is

strictly positive if and only if N
N+1

(−R)+R = R
N+1

> 0, i.e. always. And payoff is zero

when γM = 0. There are no other critical points and the strategy can’t be negative, so

payoff falls everywhere to the left of N
N+1

R
R−L

. This is a local maximiser and there are

no critical points to its right, so payoff also falls everywhere to the right. It’s thus the

unique global maximiser on [0,∞). The global maximizer can’t lie below zero but

it can exceed one. But since payoff falls monotonically to its left, the optimal value

on [0, 1] is the one closest to this maximiser. Thus γ∗
M = min{1, N

N+1
R

R−L
} whenever

L < R > 0 (i.e., always).
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Finally, observe that when γM = 1, disciplining is perfect. Thus whenever L > 0,

the principal can achieve perfect disciplining at finite N . In fact, perfect disciplining

is immediately achieved for any N ∈ N whenever R ≤ 2L.

Lemma 5. In equilibrium, there is an IR-mechanism that yields (PD).

Proof. We show that the following is an MAE.

γA = γM = 1 ρ = ⟨s, ⌈R− 1⌉, σ∗⟩, σ∗(⟨ai⟩Ni=1) = 1{⟨ai⟩Ni=1 = ⟨g, ..., g⟩}

Of course, γA = 1 is the aligned type’s unique best reply to ρ.

Recall that with the simple policy, the misaligned type’s best reply is γ∗
M = min{1, N

N+1
R

R+L
}.

Normalise L = −1 and R > 1. Then N = ⌈R− 1⌉ makes γM = 1 is a best reply to ρ.

Fix γA, γM . Then the principal gets their full disciplining payoff G by using ρ.

Nothing better can be achieved, so ρ is a best reply.

Lemma 6. With commitment, there is a stochastic mechanism that yields (PD).

Proof. With finite support, consider the uniform distribution over {1, ..., k}. By in-

ducting backwards, of course, we have γk
M = 0. We now prove, by strong induction,

that γt
M = 1 for all t ̸= k.

Since 0 < L < R, payoff at k − 1 is

1

2
[γk−1

M L+ (1− γk−1
M )R] +

1

2
[γk−1

M R + (1− γk−1
M ) · 0] = 1

2
(γk−1

M L+R).

Thus γk−1
M = 1 is optimal.

Now fix some s ∈ {1, ..., k − 1} and suppose that γk−z
M = 1 is optimal for all

z ∈ {1, ..., s− 1}.

Payoff at k − s is then as follows. If deployment is now, the agent gets the direct

payoff. If it’s next episode, then payoff is nonzero only if the good action is played

now. And if so, we know by the (strong) inductive hypothesis that the good action

will be played, yielding the low payoff. Likewise if it’s in two episodes or more, until
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we reach the kth episode, where the bad action is played.

Pr(N ′ = k − s|N ′ ≥ k − s)[γk−s
M L+ (1− γk−s

M )R]

+Pr(N ′ = k − (s− 1)|N ′ ≥ k − s)[γk−s
M L+ (1− γk−s

M ) · 0]

+ ...+ Pr(N ′ = k − 1|N ′ ≥ k − s)[γk−s
M L+ (1− γk−s

M ) · 0]

+Pr(N ′ = k|N ′ ≥ k − s)[γk−s
M R + (1− γk−s

M ) · 0]

=
1

s+ 1
[γk−s

M L+ (1− γk−s
M )R] +

s− 1

s+ 1
γk−s
M L+

1

s+ 1
γk−s
M R

=
1

s+ 1
(γk−s

M sL+R).

Thus γk−s
M = 1 is optimal. This thereby holds for all s ∈ {1, ..., k − 1}.

We’ve shown that in this case, γk
M = 0 and γt

M = 1 for all t ̸= k.

The probability of the bad action being played is then Pr(N ′ = k) = 1
k
, which goes

to zero as k goes to infinity. In other words, disciplining is asymptotically perfect.

Lemma 7. In equilibrium, there is a stochastic mechanism that asymptotically yields (PD).

Proof. Consider the stochastic policy with (i) a geometric distribution over the num-

ber of episodes, and (ii) the simple policy for each realisation number of episodes.

The probability of being in deployment at a given episode is constant at p. We can

let γt
M be fixed at γM since the process is a martingale. The expected utility at any t

is then

p[γML+ (1− γM)R] + (1− p)γM(p[γML+ (1− γM)R] + (1− p)γM [...

=
∞∑
i=0

(1− p)i(γM)ip[γML+ (1− γM)R]

=
p[γML+ (1− γM)R]

1− (1− p)γM
.
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Its first derivative is p(L−Rp)
[1−γM (1−p)]2

so when 0 < L < R, the optima are

γ⋆
M =


1 if L > Rp

∈ [0, 1] if L = Rp

0 if L < Rp

Thus, by setting a sufficiently low p in the geometric distribution, the principal

can induce type M to always play the good action. This yields the maximum achiev-

able payoff of G for the principal.

B.2 Additional discussion of robustness to partial information

B.2.1 Noisy signals

The agent observes a signal at each point in its information set. These signals can

take two values {t, d} and are distributed according to ι. The probability that a signal

matches the agent’s location, T or D, measures its informativeness. We denote by

τ ≜ ι(t|T ) the test-time accuracy and by δ ≜ ι(d|D) the deployment-time accuracy.22

The signals are drawn independently in each period.

We look at the simple policy: the principal deploys if and only if π is below

some threshold, and if so, deployment happens only after history gN . Thus type A

always plays g. We focus on the effect of these signals on type M ’s strategy and on

the principal’s payoff when N grows large. Type M ’s best reply to this policy is now

described by a pair (γt⋆
M , γd⋆

M ), corresponding to the probability of taking action g after

observing each signal.

22We restrict the accuracies to τ, δ ∈ (1/2, 1). Setting them to a half or to one would qualitatively
reproduce the analysis for the cases without signals and with perfect recall and deterministic deploy-
ment policies, respectively.
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Lemma 8. For sufficiently large N , M ’s unique best reply when R > 1−δ
δ

is

γt⋆
M = 1, γd⋆

M =
N

N + 1

[
δ(R + 1)− 1

δ(R + 1)
− τ

1− τ

1

N

]

while when R ≤ 1−δ
δ

, and for all N ∈ N, it is

γt⋆
M =

N

N + 1

R

R + 1

1

1− δ
, γd⋆

M = 0

The requisite N at which the above results begin to hold is, in both cases, pro-

portional to τ
1−τ

. As a result, the requisite lower bound on the number of testing

episodes does indeed grow without bound as the test-time signal accuracy goes to

one. Observe that asymptotic perfect screening continues to hold in the current set-

ting with i.i.d. signals: letting N grow allows the principal to get arbitrarily close

to her perfect screening payoff. This holds for arbitrary degrees of signal accuracy

τ, δ ∈ (1/2, 1).

Proof. In this proof, denote the misaligned type’s strategy using γM = (pt, pd) for

simplicity.

R > 1−δ
δ

case.

The misaligned type’s payoff from following behavioural strategy γM = (pt, pd)

is

E[uM(γ)] = [τpt+(1−τ)pd]
Nσ(gN)

(
δ
[
pd(−1)+(1−pd)R

]
+(1−δ)

[
pt(−1)+(1−pt)R

])
.

(6)

We begin by finding critical points for pd. Its first-order condition is

0 = N [τpt + (1− τ)pd]
N−1(1− τ)σ(gN)

(
δ
[
R− pd(R + 1)

]
+ (1− δ)

[
R− pt(R + 1)

])
+ [τpt + (1− τ)pd]

Nσ(gN)(−1)δ(R + 1). (7)
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Rearranging while assuming, for now, that σ(gN), pt ̸= 0 yields

pd =
NR (1− τ)− pt (R + 1) [τδ + (1− τ) (1− δ)N ]

(N + 1) (R + 1) (1− τ) δ
(8)

since τ ̸= 1 given the setup.

Evaluating the second-order condition at the critical value of pd yields

N(1−τ)σ(gN)

pt

≥ 0 as τ,δ∈(0.5,1)︷ ︸︸ ︷
[τδ − (1− τ)(1− δ)] +(1− τ) R

R+1

δ
(
N+1
N

)


N−2 [
pt(R + 1)(1− τ − δ)−R(1− τ)

]
︸ ︷︷ ︸

< 0 as τ,δ∈(0.5,1)

(9)

which is clearly negative for any pt ∈ [0, 1]. Therefore, the second order condition for

local maximality is satisfied at the critical value of pd.

This critical value of pd will be non-negative if and only if

pt ≤
NR(1− τ)

(1 +R) [τδ + (1− τ)(1− δ)N ]
. (10)

Given that pt ∈ [0, 1], a sufficient condition for the satisfaction of this inequality is

that the fraction in (10) is at least one. Suppose R > 1−δ
δ

. Then rearrange to obtain

N ≥
(

τ

1− τ

)
δ(R + 1)

δ(R + 1)− 1
. (11)

Given that τ, δ ̸= 1, the inequality will hold for some sufficiently large N as R ̸=
1−δ
δ

. Therefore, for any admissible values of τ, δ and R > 1−δ
δ

, there exists some

sufficiently large N
¯

such that for all N ≥ N
¯

, expression (11) will hold. Given this,

the optimal pd will be non-negative.

We now show that the optimal value of pt ∈ [0, 1] given the interior solution

in equation (8) is indeed unity. For ease of exposition, let A ≜ NR(1 − τ), B ≜

(R + 1)[τδ + (1 − τ)(1 − δ)N ], and C ≜ (N + 1)(R + 1)(1 − τ)δ. Then, plugging (8)
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into (6) and rearranging yields

E[uM(pt, pd)] =

[
pt

(
τ − (1− τ)

B

C

)
+ (1− τ)

A

C

]N
σ(gN)

(
pt(R + 1)

[
δ
B

C
− (1− δ)

]
+ δ

[
R− (R + 1)

A

C

]
+R(1− δ)

)
. (12)

To conclude that the payoff in (12) increases in pt, it is thus suffices to show (i)

that τ − (1− τ)B/C ≥ 0 and (ii) that δB/C− (1− δ) ≥ 0. Expanding and rearranging

these shows that they are both equivalent to τδ ≥ (1− τ)(1− δ), which holds for all

τ, δ ∈ [0.5, 1).

Thus if pt = 1 and R > 1−δ
δ

, we have an interior solution for pd at sufficiently

large N . And if we have an interior solution for pd, payoff is maximised at pt = 1.

We have thereby shown that when R > 1−δ
δ

, for sufficiently large N ∈ N, the unique

time-consistent strategy is

p⋆t = 1 (13)

p⋆d =
NR (1− τ)− (R + 1) [τδ + (1− τ) (1− δ)N ]

(N + 1) (R + 1) (1− τ) δ
.

Rearranging the expression for p⋆d completes the proof for the first part of the

proposition for ex ante case.

R ≤ 1−δ
δ

case.

Now consider the case where R ≤ 1−δ
δ

. We start by solving the FOC for pt, which

yields

pt =
NRτ − pd (R + 1) [(1− τ)(1− δ) + τδN ]

(N + 1) (R + 1) (1− δ) τ
. (14)

The second-order condition is satisfied for admissible ranges of this critical value.

This critical value of pt will be strictly less than one if and only if

pd >
NRτ − (N + 1) (R + 1) (1− δ) τ

(R + 1) [(1− τ)(1− δ) + τδN ]
. (15)
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Given that pd ∈ [0, 1], a sufficient condition for the satisfaction of this inequality

is that the fraction in (15) is less than zero. Then rearrange to obtain

0 < N(1− (1 +R)δ) + (R + 1)(1− δ) (16)

This inequality will satisfied by all feasible parameter values as long as R ≤ 1−δ
δ

.

We now show that the optimal value of pd ∈ [0, 1] given the interior solution in

(14) is zero. Plugging (14) into (6) and rearranging yields

E[uM(pt, pd)] =

[
NRτ − pd(R + 1)[(1− τ)(1− δ) + τδN ]

(N + 1)(R + 1)(1− δ)
+ (1− τ)pd

]N
(17)

σ(gN)

[
R− (1 +R)

(
δpd +

[
NRτ − pd(R + 1)[(1− τ)(1− δ) + τδN ]

(N + 1)(R + 1)τ

])]

To see that the payoff in (17) decreases in pd, observe that the expression is de-

creasing in pd whenever τδ > (1 − τ)(1 − δ), which holds for all τ, δ ∈ (0.5, 1]. Thus,

if R ≤ 1−δ
δ

, we have an interior value of pt, and payoff is maximized at pd = 0. And if

we have pd = 0, the optimal interior pt = NR
(N+1)(R+1)(1−δ)

. Therefore, we have shown

that when R ≤ 1−δ
δ

, the unique time-consistent strategy is

p⋆t =
N

N + 1

R

R + 1

1

1− δ
< 1; (18)

p⋆d = 0.

Uniqueness.

For uniqueness, we now solve the ex interim case for CDT+SIA.

Definition 1 (SIA). Beliefs derived from the self-indication assumption are given by

µSIA
γ (h|X) ≜

Pr(h|γ)∑
h′∈X Pr(h′|γ)

(19)

where Pr(h|γ) denotes the objective probability of the player reaching h, which lies within

information set X , in a single run of the game when behavioural strategy profile γ is played.
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Definition 2 (CDT). Compute the expected utility as if you control your action at the cur-

rent node and assume you play on-path at future nodes in the same information set. See

Oesterheld and Conitzer (2024) for a formal treatment.

Since we will be comparing expected payoffs conditional on common events,

we can ignore the common denominators in the SIA beliefs. We only need to use

the numerators. For notational simplicity, we therefore denote by Ẽ[uM(a)|s] the

normalised expected payoff of type M playing action a conditional on observing

s ∈ {t, d} obtained by multiplying E[uM(a)|s] by the associated denominator.

Ẽ[uM(g)|t] = Nτ [τpt + (1− τ)pd]
N−1σ(gN)

[δ(R− pd(R + 1)) + (1− δ)(R− pt(R + 1))]

− [τpt + (1− τ)pd]
Nσ(gN)(1− δ)

Ẽ[uM(b)|t] = [τpt + (1− τ)pd]
Nσ(gN)(1− δ)(R)

Ẽ[uM(g)|d] = N(1− τ)[τpt + (1− τ)pd]
N−1σ(gN)

[δ(R− pd(R + 1)) + (1− δ)(R− pt(R + 1))]

− [τpt + (1− τ)pd]
Nσ(gN)δ

Ẽ[uM(b)|d] = [τpt + (1− τ)pd]
Nσ(gN)δ(R)

Setting Ẽ[uM(g)|d] = Ẽ[uM(b)|d], with pt = 1, yields

p⋆d =
NR (1− τ)− (R + 1) [τδ + (1− τ) (1− δ)N ]

(N + 1) (R + 1) (1− τ) δ
. (20)
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To show this is in fact a best reply, first set pd = 1 and observe that

Ẽ[uM(g)|d] = −N(1− τ)σ(gN)− σ(gN)δ

Ẽ[uM(b)|d] = σ(gN)δR

so clearly the bad action is preferred in this case, thus pd ̸= 1. Next, set pd = 0:

Ẽ[uM(g)|d] = N(1− τ)[τ ]N−1σ(gN)[δ(R)− (1− δ)]− [τ ]Nσ(gN)(1− δ)

Ẽ[uM(b)|d] = [τ ]Nσ(gN)(1− δ)(R).

For any N that satisfies expression (11), the good action will be preferred, thus

pd ̸= 0. This suffices to show that the optimal p⋆d in expression (20) is the unique best

reply.

Next, we show that, for pt = 1 and pd ∈ (0, 1), the condition that Ẽ[uM(g)|t] >

Ẽ[uM(b)|t] is, under admissible parameter values, equivalent to

pd <
Nτ [δτ − (1− δ)]− (1− δ)(1 +R)τ

(1 +R)[Nτδ + (1− δ)(1− τ)]
. (21)

Plugging in the optimal value of p⋆d in expression (20), it is clear that expression

(21) holds for all admissible values of N,R, τ, and δ. By an analogous argument as in

the ex ante case, this inequality holds for all pt ∈ [0, 1) at optimal p⋆d. This suffices to

show that the optimal choice of pd and pt under CDT+SIA coincides with the ex ante

optimal solution. An analogous argument proves the same result for the R ≤ 1−δ
δ

case.

By Corollary 7 of Oesterheld and Conitzer (2024), any time-consistent behavioural

strategy will maximise expected payoff when using EDT+SSA. Likewise, by Corol-

lary 9 of Oesterheld and Conitzer (2024), any EDT+SSA-optimal behavioural strat-

egy will be CDT+SIA-optimal. Here we solve the CDT+SIA problem and thereby

conclude that the solution describes the unique optimal behavioural strategy under
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CDT+SIA, under EDT+SSA, and ex ante.

Lemma 9. Suppose type M prefers g to non-deployment. For sufficiently large N , M ’s

unique best reply is

γt⋆
M = 1, γd⋆

M = min

{
1,

N

N + 1

[
δ(R− 1) + 1

δ(R− 1)
− τ

1− τ

1

N

]}

Proof. We omit the proof, as it proceeds analogously to the proof for Lemma 8.

B.2.2 ‘Truth-or-nothing’ signals

Here we consider a case in which the agent may find itself in three different infor-

mation sets, two of which reveal its location with perfect accuracy. That is, ι(T |t) =

ι(D|d) = 1. Now, whether the agent observes the signal realisation is stochastic.

Thus, the agent in testing will observe the t-signal with probability p, and with com-

plementary probability observe nothing. Likewise, in deployment, it will observe

the d-signal with probability q, or else nothing. As above, the A type always plays

g. The M type’s strategy is a triple ⟨γt
M , γd

M , γM⟩ corresponding to the probability of

playing action g after each observation.

Lemma 10. Under i.i.d. truth-or-nothing signals, M ’s best reply to the simple policy is

γt⋆
M = 1 γd⋆

M = 0 γ⋆
M = min

{
1,max

{
0,

N

N + 1

R

R− L

1

1− q
− 1

N + 1

p

1− p

}}

Here L parameterises whether the M type relative prefer between g and non-

deployment, where L < 0 means non-deployment is preferable. Perfect screening is

achieved asymptotically in this case precisely when q < −L
R−L

. However, the perfect

disciplining payoff can never be reached. Although the principal can induce γ⋆
M =

1, the misaligned type will learn its location upon deployment with probability q,

following which it will play its favourite action.

Proof. Start with type A. Setting γt
A = γd

A = γA = 1 yields a certain payoff of 1.
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No higher payoff is achievable. Any deviation is detrimental in expectation since

p, q /∈ {0, 1}. So this reply is uniquely optimal.

Next, consider type M . If the agent learns it is deployed with certainty, it is

strictly optimal to play b, so γd⋆
M = 0. To find γt⋆

M , we note that the agent’s payoff

conditional on deployment when γM is set optimally must be positive. To see this,

we simplify the notation slightly and write

E[uM(γ, γt, γd)] = [pγt + (1− p)γ]N [q(−γd + (1− γd)R) + (1− q)(γL+ (1− γ)R)]

= [pγt + (1− p)γ]N [R− γ(1− q)(R− L)].

Observe that the (deployment) payoff is zero at γ = R
R−L

1
1−q

. If this fraction ex-

ceeds one, then the deployment payoff is always positive. If it is below one, then

zero payoff is achievable. The agent would then be able to do better by reducing γ

slightly, making the deployment payoff strictly positive without making the deploy-

ment probability zero. Since the deployment payoff must therefore be positive at the

optimum, it is strictly optimal to set γ⋆
t = 1. Finally, for γ, the first-order condition is

N [p+ (1− p)γ]N−1(1− p)[R− γ(1− q)(R− L)] = [p+ (1− p)γ]N(1− q)(R− L)

N(1− p)[R− γ(1− q)(R− L)] = [p+ (1− p)γ](1− q)(R− L)

NR(1− p)− p(1− q)(R− L) = γ(1− p)(1− q)(R− L)(N + 1)

γ =
N

N + 1

R

R− L

1

1− q
− 1

N + 1

p

1− p
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To confirm local concavity, observe that the second-order condition is satisfied:

N(N − 1)[p+ (1− p)γ]N−2(1− p)2[R− γ(1− q)(R− L)]

−(1− q)(R− L)N [p+ (1− p)γ]N−1(1− p)

−N [p+ (1− p)γ]N−1(1− p)(1− q)(R− L) < 0

⇔ (N − 1)(1− p)[R− γ(1− q)(R− L)]− (1− q)(R− L)[p+ (1− p)γ]

−[p+ (1− p)γ](1− q)(R− L) < 0

⇔ (N − 1)(1− p)R− 2p(1− q)(R− L) < γ(1− p)(1− q)(R− L)(N + 1)

⇔ γ >
N − 1

N + 1

R

R− L

1

1− q
− 2

N + 1

p

1− p

which of course holds whenever the first-order condition is satisfied. Hence we

have a unique maximiser within the permitted parameter values, and utility falls

monotonically on either side. Thus

γ⋆ = min

{
1,max

{
0,

N

N + 1

R

R− L

1

1− q
− 1

N + 1

p

1− p

}}
.

B.3 Beneficial information for the principal

Consider the setting of section B.2.1 where the principal uses the simple policy and

the agent’s best reply is given by Lemma 8.

Lemma 11. Let R > 1. For any prior π, the principal’s payoff is increasing in δ and

decreasing in τ when N is sufficiently large.

What drives this result is that for sufficiently large N , increasing δ increases γd⋆
M .
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This holds, in turn, because raising δ has two opposing effects on the desirability of

playing the good action for the misaligned type. Firstly, it makes playing the good

action upon seeing the deployment signal less valuable since it is more likely that

the agent is truly deployed. This places downward pressure on γd⋆
M . But, secondly,

because the agent only plays their favoured action when observing the deployment

signal, a greater deployment-time signal accuracy makes the prospect of being de-

ployed more desirable in the first place. This motivates the agent to do what it takes

to get to deployment with higher probability, placing upward pressure on γd⋆
M . When

N is sufficiently large, the upward pressure is stronger.

Proof. Recall that

p⋆d =
N

N + 1

[
δ(R + 1)− 1

δ(R + 1)
− τ

1− τ

1

N

]
(22)

when R > 1. Observe that

∂p⋆d
∂δ

=
N

N + 1

1

R + 1

(
1

δ

)2

> 0 (23)

∂p⋆d
∂τ

=
−1

N + 1

(
1

1− τ

)2

< 0 (24)

The principal’s ex ante payoff is given by

E[uP ] = (1− π) + π(τpt + (1− τ)pd)
N [δ(2pd − 1) + (1− δ)(2pt − 1)] (25)

which, plugging in for optimal p⋆t = 1, gives

E[uP ] = (1− π) + π(τ + (1− τ)pd)
N [δ(2pd − 1) + (1− δ)]. (26)

Taking a derivative with respect to pd and we find that expression (26) is strictly
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increasing if and only if

pd >
N(1− τ)(2δ − 1)− 2δτ

(N + 1)(1− τ)2δ
(27)

which, when plugging in the optimal value of pd found in Proposition ??, rearranges

to
δ(R + 1)− 1

δ(R + 1)
>

2δ − 1

2δ
(28)

which clearly always holds given R > 1. This suffices to show that

sign
(
∂E[uP ]

∂δ

)
= – sign

(
∂E[uP ]

∂τ

)
= sign

(
∂E[uP ]

∂p⋆d

)
. (29)
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