
Existential Risk and
Growth

Leopold Aschenbrenner and Philip Trammell (Global

Priorities Institute and Department of Economics,

University of Oxford)

Global Priorities Institute |May 2024

GPIWorking Paper No . 13-2024

Please cite this working paper as: Aschenbrenner, L., and Trammell, P. Existential Risk and

Growth.Global Priorities InstituteWorking Paper Series, No. 13-2024.Available at
https://globalprioritiesinstitute.org/existential-risk-and-growth-

aschenbrenner-and-trammell



Existential Risk and Growth

Leopold Aschenbrenner∗ and Philip Trammell†

June 9, 2024

Abstract

Technology can pose existential risks to civilization. Though accelerating tech-

nological development may increase the hazard rate (risk of existential catastro-

phe per period) in the short run, two considerations suggest that acceleration

decreases the risk that such a catastrophe ever occurs. First, acceleration de-

creases the time spent at each technology level. Second, since a richer society

is willing to sacrifice more for safety, optimal policy can yield an “existential

risk Kuznets curve”, in which acceleration pulls forward periods when risk is

low. Acceleration typically increases risk only given su�ciently extreme policy

failures or direct contributions of acceleration to risk.
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1 Introduction

Technology brings prosperity. Its impact on existential risk—the risk of human ex-

tinction, or, equivalently for decision purposes, of an equally complete and permanent

loss of human welfare—strikes many as ambiguous at best.1 Advances in vaccine tech-

nology render us less vulnerable to devastating plagues; advances in gain-of-function

virology arguably make them more likely (Millett and Snyder-Beattie, 2017).

This raises the possibility of a tradeo↵: concern for the survival of civilization

may motivate slowing development, at least outside some narrow domains. Environ-

mentalist sentiments along these lines go back at least to the Club of Rome’s 1972

report on the “Limits to Growth”, and have recently reemerged with calls to pause

AI development (Future of Life Institute, 2023). Jones (2024) explores how to make

the tradeo↵ between AI development and AI risk, assuming the tradeo↵ exists.

Does it? Would slowing technological development reduce existential risk?

To shed light on this question, we begin in Section 2 with a simple model in which

the hazard rate—the probability of catastrophe per period—is a positive function of

the technology level. Here, an existential catastrophe must occur eventually unless

in the long run higher technology levels carry hazard rates that fall toward zero.

This leaves two possibilities. If advanced technology does not eventually drive the

hazard rate toward zero, then a catastrophe is inevitable, so accelerating technological

development cannot increase its probability. Otherwise, however, a catastrophe is

avoidable, and acceleration can lower its probability by hastening the arrival of safety.

This simple model formalizes two observations. The first is that if we believe

that the hazard rate is currently high, our only hope for a long and valuable future

is the hope that we are living through a temporary “time of perils”. This view was

1See e.g. Bostrom (2002), Posner (2004), Farquhar et al. (2017), Ord (2020), and Jones (2024).

We will refer to the event that humanity immediately goes extinct or su↵ers a similarly complete

and permanent loss of welfare as an “existential catastrophe”, or simply “catastrophe”.
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famously expressed by Sagan (1997), who coined the phrase, and its implications

for those especially concerned about the long-term future are emphasized by Parfit

(1984), Ord (2020), and others. The second is less widely appreciated: that if we

are in a time of perils, with the hazard rate a positive function of the technology

level, then, though technological development has increased the hazard rate so far,

deceleration for the sake of long-term survival is misguided. Speeding technological

development may be temporarily risky, but it is safer in the long run.2

The model of Section 2 is not “economic”. It studies the impact on risk of quickly

escaping risky states, not optimal policy under constraints. It thus leaves open the

possibility that, when consumption–risk tradeo↵s are navigated by a policymaker

with little concern for long-term survival, technological acceleration can increase risk

after all. Section 2 also o↵ers no reason to believe that future states will be safe. If

one believes that technology has historically increased the hazard rate, the hope that

this relationship will reverse in the future may seem naive.

In Section 3, we therefore introduce an environment in which technology grows

exogenously and its risks can be mitigated by policy. As new potentially dangerous

technologies are introduced, a planner, discounting the future at an arbitrary rate,

decides how much consumption to sacrifice to lower the hazard rate.

We illustrate that, even if technological advances in isolation always raise the

hazard rate, optimal policy can generate an “existential risk Kuznets curve”, with

the hazard rate rising and then falling as technology advances. Early, when the

expected discounted value of the future of civilization is low and the marginal utility of

consumption is high, it is worthwhile to adopt risky technologies as they arrive. Later,

when the discounted future is more valuable and the marginal utility of consumption

has fallen, substantial risk mitigation becomes worthwhile.

The possibility of a policy response thus o↵ers an economic justification for the

2The point is however noted informally by Bostrom (2014), p. 234, and recently by Ord (2024).
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view that we may indeed be living through a once-in-history time of perils. Safety is

a luxury good, and technological development generates a wealth e↵ect. If the wealth

e↵ect is strong enough, then optimal policy eventually lowers the hazard quickly

enough that the probability of escaping the time of perils is positive.

This insight mirrors the logic of Stokey (1998) and Brock and Taylor (2005), on

which environmental damages rise and then fall with economic development, and of

Jones (2016, 2024), on which growth yields increases in the value of life relative to

marginal consumption. Like the analysis presented here, these papers find that, given

su�ciently concave utility functions, wealth increases motivate large reallocations

from consumption to safety. None of these sources solve for the optimal path of a

hazard rate over time, however, or characterize conditions under which the probability

of a binary event (here, existential catastrophe) under optimal policy is less than 1.

Our model of catastrophic risk di↵ers more significantly from those of Martin

and Pindyck (2015, 2021) and Aurland-Bredesen (2019). That literature studies

a society’s willingness to pay to reduce the risk of catastrophes that are, or are

equivalent to, proportional consumption cuts. In such a context there are no wealth

e↵ects: the fraction of consumption one is willing to sacrifice to avoid a proportional

consumption cut is, by definition, independent of one’s consumption.

For the reasons that policy facilitates survival on a given (increasing) technology

path, optimal policy tends to magnify the extent to which technological acceleration

decreases long-term risk. As in the policy-free model, acceleration decreases the

time spent in any given risky state. Under optimal policy, however, the wealthier

future states pulled forward by an acceleration are systematically inclined to be safer,

due to the wealth e↵ect. Furthermore, given an increase to the future growth rate,

even before actual productive capacity has yet increased, the anticipation of a more

valuable future motivates more stringent safety policy in the present.

This analysis might be compared with that of Baranzini and Bourguinion (1995).



4

Baranzini and Bourguinion find conditions under which the growth path that

maximizes expected discounted utility also minimizes the probability of existential

catastrophe. In our model these objectives never perfectly align, but we explore

how technological advances, when regulated with a view to maximizing expected

discounted utility, can lower the probability of an existential catastrophe.

Sections 2 and 3 explore models in which the state of technology at a given time

contributes to the hazard rate. Section 4 considers the possibility that risk is “tran-

sitional”, increasing in the rate of technological development.

Absent policy, the e↵ect of acceleration on long-term transition risk is ambiguous.

In particular, acceleration has no e↵ect on long-term risk under the assumption that

the “experiment” associated with developing a given technology poses a risk that is

independent of how many experiments happen concurrently. This is the assumption

of e.g. Jones’s (2016) “Russian roulette” model of risky technological development.

If the future contains a sequence of experiments, each of which will induce some

probability of existential catastrophe, then stagnation can lower risk by avoiding

advanced experiments altogether, but a technological acceleration that only pulls

forward their date leaves the probability of catastrophe unchanged.

As in Section 3, introducing an optimal policy response facilitates survival due to

wealth e↵ects, potentially replacing an ever-increasing hazard rate with a Kuznets

curve. Also, though the e↵ect of acceleration on long-term transition risk remains

ambiguous given policy, policy can shift the conditions under which acceleration has

a given e↵ect on risk. At least in the particular model of transition risk studied in

Section 4, the existence of a policy response significantly widens the conditions under

which acceleration lowers transition risk.

Section 5 summarizes these analyses and their limitations.
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2 State risk without mitigation

2.1 Model

The hazard rate — The “hazard rate” �t is the flow probability at t of anthropogenic

existential catastrophe. Assume that it is a continuous function of the technology

level At:

�t = �(At).

Assume that At is exogenous and strictly increasing without bound in t. Fur-

ther assumptions on the technology path can be made without loss of generality, as

they simply amount to re-indexing technology levels without changing their ordering.

Assume therefore without loss of generality that A(·) is di↵erentiable and that its

derivative is everywhere positive.

Finally, assume that �(A) > 0 for all A.

Survival — The probability that civilization survives to date t is given by

St ⌘ e
�

R t
0 �sds () Ṡt = ��tSt, S0 = 1.

The probability that human civilization avoids an [anthropogenic] existential catas-

trophe and, at least in expectation, enjoys a long and flourishing future3 is

S1 ⌘ lim
t!1

St = e
�

R1
0 �sds. (1)

We will refer to {�t}1t=0 as the hazard curve, to the area under the hazard curve

(
R1
0 �tdt) as cumulative risk, and to S1 as the probability of survival. Note that

3In the face of natural existential risk, this will entail succumbing to a natural existential catas-

trophe instead. From very-long-run historical data on large-scale natural catastrophes, and the

typical survival rate of other mammalian species, Snyder-Beattie et al. (2019) estimate that human-

ity’s natural existential hazard rate is below one in 870,000 per year. Throughout this paper we

ignore the possibility that technological advances may mitigate natural existential risks. Accounting

for this possibility would only strengthen the headline results.
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the probability of survival decreases in cumulative risk, and that survival is possible

(S1 > 0) i↵ cumulative risk is finite.

2.2 How does acceleration a↵ect risk?

Absent a negative shock severe enough to induce stagnation or recession, technology

crosses every value from A0 to 1 exactly once. So the area under the hazard curve

can be defined by integrating with respect to technology instead of time:

Z 1

0

�(At)dt =

Z 1

A0

�(A)
⇣
dA

dt

⌘�1

dA =

Z 1

A0

�(A)Ȧ�1
A
dA, (2)

where, somewhat abusing notation, ȦA denotes the value of Ȧ when the technology

level equals the subscripted A. This change of variables makes it easier to see how

various shocks to the growth path a↵ect cumulative risk.

Instantaneous level e↵ects — Consider a shock to the technology level for a short

period beginning at t, so that the technology level over this period is approximately

Ã rather than At (and the subsequent technology path is unchanged). The sign of the

impact of this shock on cumulative risk depends on whether �(Ã) is greater or less

than �(At). From the leftmost integral of (2), we see that the impact on cumulative

risk per unit time of an instantaneous shock to the technology level at t, from At to

Ã, equals

�(Ã)� �(At).

Instantaneous accelerations — Consider the impact on cumulative risk per unit time

of an instantaneous shock to technology growth at t, so that the technology growth

rate at t is ˙̃
A rather than Ȧt, and the subsequent technology growth rate at each

level of technology is unchanged. From the rightmost integral of (2), we see that the

impact of this shock on cumulative risk per unit of increase to the technology level

during the acceleration is �(At)(
˙̃
A

�1 � Ȧ
�1
t ). Multiplying this by the new rate of
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technology growth per unit time, the impact on cumulative risk per unit time is

��(At)
� ˙̃
A/Ȧt � 1

�
.

Accelerations — Choose technology level A > A. Since the baseline technology path

increases continuously and without bound, A = AT for some T > t.

Consider the e↵ect of increasing the technology level at t from A to A, and sub-

sequently maintaining the technology path As = As+(T�t) (s � t). This shock to the

technology path amounts to a “leap forward in time”. The impact of this shock on

cumulative risk is therefore to cut a slice cut out of the hazard curve. Cumulative

risk falls from (2) to

Z
At

A0

�(A)Ȧ�1
A
dA+

Z 1

AT

�(A)Ȧ�1
A

dA.

That is, it falls by

Z
A

At

�(A)Ȧ�1
A

dA.

More generally, define a temporary acceleration as an increase to Ȧ at some range

of technology levels: say, from At to AT . Because the exponent on Ȧ in the integral

is negative, the acceleration lowers the risk endured at the given range of technology

levels. A discontinuous jump in the technology level amounts to raising ȦA to 1,

and thus lowering Ȧ
�1
A

to 0, from A = At to AT .

A jump in the technology level from At to AT temporarily increases the hazard

rate if �(AT ) > �(At). Likewise, an acceleration to technology growth accelerates an

increase to the hazard rate if �(·) is increasing around At. It may therefore appear

to contemporaries that a given permanent level e↵ect decreases the probability of

survival. Here, that would be incorrect. If (2) is infinite, the probability of survival is

zero with or without the permanent level e↵ect.4 If (2) is finite, the permanent level

e↵ect increases decreases cumulative risk and increases the probability of survival.

4
R AT

At
�(At)dt is finite by the continuity of � in A and of A in t.
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Define a permanent acceleration to be a permanent increase to Ȧ from some time t—

or, equivalently, some technology level At—onward. As is plain from (2), a permanent

acceleration, like a temporary acceleration, must lower cumulative risk if cumulative

risk is finite on the baseline technology path.

Unlike temporary accelerations, however, permanent accelerations can render sur-

vival possible when it would otherwise be impossible. Shrinking a heavy-tailed curve

with an infinite integral can yield a thin-tailed curve with a finite integral.

To state this lesson in reverse, consider stagnation: a permanent “negative accel-

eration” setting As = At for all s � t. The hazard rate is then permanently positive,

and survival impossible, even if it might have been possible at any positive technology

growth rate. More concretely, consider the implications of a large negative technology

shock today which returned the world to a state of ignorance about every technol-

ogy developed since 1924. Perhaps the hazard rate was much lower in 1924 than

today, but even if so, this reset would largely doom us to relive the nuclear stando↵s,

emissions-intensive industrializations, and biotechnological hazards of the past. With

enough replays of the past century, a catastrophe would presumably be inevitable.

3 State risk with mitigation

3.1 Motivation

If technological progress has historically increased the hazard rate, the message of the

previous section is that those who wish to reduce existential risk should accelerate

technological progress in the hope that the relationship between risk and technology

eventually reverses. This may seem naive. Perhaps the more natural assumption is

that, all else equal, technological progress will only increase the hazard rate, bringing

the inevitable catastrophe sooner.

But the hazard rate presumably depends also on policy. If the hazard rate has

increased historically, this represents a failure of policy to keep up with new risks as
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they have arisen. In light of the interaction between technology and policy, could

existential risk be lowered by developing technology more slowly?

If the path of policy is not optimal, yes. E.g. if policy is exogenous, cumulative risk is

lower when periods of especially risky technology are timed to coincide with periods

of especially stringent policy. For illustration, suppose that

�t = Atxt, xt = (1 + t)�2
,

where x denotes a policy variable. Then consider an acceleration from the technology

path At = (1 + t)k to the technology path At = (1 + t)k̃, where k < 1 < k̃. This

acceleration increases cumulative risk from
Z 1

0

(1 + t)k�2
dt to

Z 1

0

(1 + t)k̃�2
dt.

The former is finite, because k � 2 < �1. The latter is infinite, because k̃ � 2 > �1.

In this case, acceleration lowers the probability of survival to zero.

Less obvious is whether acceleration can increase cumulative risk when the policy re-

sponse is optimal, within a plausible model of the feasible policy set. One might worry

that, during an interval in which more advanced technology carries higher hazard, a

planner will adapt policy to the degree of risk, but too weakly for acceleration to

lower cumulative risk on balance—perhaps in part because she cares too little about

the future to sacrifice much present consumption for safety.

To evaluate this possibility, this section introduces a policy channel through which

a planner, discounting the future at an arbitrary rate, can sacrifice consumption to

lower the hazard rate. As we will see, when policy is set optimally—with respect to

any discount rate—the conclusion that acceleration lowers cumulative risk is generally

not only maintained but strengthened.

As in the tech-only model of Section 2, survival can only be achieved by pulling

forward a future that asymptotically approaches perfect safety. Whereas the earlier
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model is agnostic about whether more advanced technology will in fact carry a lower

hazard rate, however, a policy response introduces a tendency for faster technological

development to carry lower risk in the long run. This is because technology increases

consumption, which both decreases the utility cost of a marginal consumption sacrifice

and increases the value of life. Furthermore, the prospect of a future acceleration now

lowers the present hazard rate, because when the value of the future is greater, it is

worth sacrificing more today to prevent its ruin.

These dynamics are illustrated in a simple model of technology and optimal policy

in the rest of this section. Generalized results are given in Appendix A.3.

3.2 The economic environment

3.2.1 Technology

The maximum feasible level of consumption at t equals the technology level At. Actual

consumption is At multiplied by a policy choice xt 2 [0, 1]:

Ct = Atxt. (3)

The tradeo↵ at the heart of this section is that a technologically advanced civilization

can risk self-destruction, but that this risk can be lowered at some cost to consump-

tion, as represented here by a choice of x below 1. (We denote the choice variable

x to remind the reader that higher choices of x come with higher existential risk.)

Choices of x below 1 may constitute bans on the adoption of consumption-increasing

but risky production processes and/or allocations of resources to the production of

safety-increasing goods and services like pandemic monitoring.

The technology frontier A grows at a constant rate g:

Ȧt = Atg, g > 0, A0 > 1. (4)
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3.2.2 Hazard rate

The hazard rate �t is now a function of the technology level At and the policy choice

xt 2 [0, 1], and is increasing in xt. In this simple model, the elasticities of the hazard

rate in A and in x are constant, so that

�(At, xt) = �̄A
↵

t
x
�

t , �̄ > 0, � > ↵ > 0, � > 1. (5)

We impose the three inequalities of � > ↵ > 0, � > 1 to satisfy three desiderata.5

The first is that, fixing xt > 0, �t increase in At. This imposes ↵ > 0. The

assumption that �t increase in At is necessary if we are to concede that technological

development has rendered existential catastrophe more likely now than it was long

ago, and that this trend would continue absent a change in policy. The proportion

1 � x of potential consumption sacrificed for the sake of existential safety has only

increased alongside technological development: having once been zero, it is a small

but positive share today.6 If it had remained fixed, the hazard rate would presumably

have followed a weakly higher path.

Second, the elasticity of �t with respect to xt is assumed to exceed the elasticity

of �t with respect to At; i.e., � > ↵. This is equivalent to the condition that, when

technology advances, it is always feasible to lower the risk level by retaining the

former consumption level, allocating all marginal productive capacity to existential

5Hazard function (5) is closely analogous to the environmental damage function of Stokey (1998).

While Stokey focuses on the implications of the damage function for the chosen path of x (or “z”

in her notation), we will study how accelerations to the path of A a↵ect the probability of a binary

event: the occurrence of an anthropogenic existential catastrophe at any time.
6Ord (2020, p. 313) estimates that, as of 2020, approximately $100M/year was spent specifically

on reducing existential risk. This is likely a great underestimate of existential safety expenditures

in the sense relevant here, for two reasons. First, explicit expenditures do not include foregone con-

sumption due to regulatory barriers. Second, many catastrophic risk reduction e↵orts are motivated

both by the desire to reduce existential risks and by the desire to reduce smaller-scale damages. By

contrast, Moynihan (2020) argues that the very concept of an anthropogenic existential catastrophe

essentially did not exist 300 years ago; it appears there were then no e↵orts taken to prevent one.
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safety measures. This may be seen by substituting xt = Ct/At (from (3)) into the

hazard function (5), yielding

�t = �̄A
↵��

t C
�

t .

Fixing C, the hazard rate falls over time i↵ � > ↵. If it is (indefinitely) infeasible

to lower the hazard rate while fixing consumption, as it is in this model if �  ↵,

then an existential catastrophe is unavoidable unless consumption falls to zero. This

degrowth would amount to the destruction of advanced civilization by other means.

If �  ↵, therefore, speeding or slowing growth can have no impact on the probability

of an existential catastrophe broadly construed.

Third, fixing At > 0, �t is assumed to be strictly convex in xt. This imposes

� > 1. The convexity implies diminishing returns to existential risk mitigation

e↵orts. We take this to be a reasonable assumption both from first principles and

from Shulman and Thornley’s (2024) recent estimates of the cost-e↵ectiveness of

existential risk mitigation e↵orts (Appendix A.1).

The relationship between a hazard curve and the corresponding probability of survival

S1 is described in Section 2.1.

3.2.3 Preferences

A planner seeks to maximize
Z 1

0

e
�⇢t

St u(Ct) dt; u(Ct) =
C

1��

t � 1

1� �
, � > 1. (6)

That is, flow utility u(·) is CRRA in consumption for some coe�cient of relative risk

aversion � > 1. Flow utility is discounted at exponential rate ⇢ > 0, representing

the sum of some rate of pure time preference, if any, and some rate of natural and

unavoidable existential risk.7

7One valid interpretation of these preferences would be that the population is fixed and (6)

is the expected utility of a representative household. Another would be that population grows
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The utility of death is implicitly normalized to 0 and the death-equivalent con-

sumption level to 1. Equivalently, we are normalizing to 1 the technology level at

which, when consumption is maximized, flow utility equals 0.

The planner chooses the path of x to maximize (6) subject to (3)–(5).

Like Martin and Pindyck (2015, 2021), we assume that � > 1 throughout the rest of

the paper, except in Section 3.3.4. We assume this in part because it appears to be

true, as documented by Hall (1988), Lucas (1994), Chetty (2006), and others. Also,

however, the results are otherwise relatively uninteresting. This is for two reasons.

First, observe that when � > 1, flow utility is upper-bounded by 1
��1 > 0. Acceler-

ating consumption growth, from a baseline of positive consumption growth, therefore

yields a stream of utility benefits that eventually shrinks over time. This dynamic

produces the key tradeo↵: concern for the future may cast doubt on the value of

speeding technological development, because the consumption benefits of doing so

primarily accrue in the short run, whereas the costs of an existential catastrophe are

everlasting. By contrast, when �  1, flow utility can grow without bound, so acceler-

ations to consumption growth and reductions in existential risk can have comparable

long-term benefits.

Second and relatedly, when �  1, the marginal utility of consumption does not

decline quickly enough (relative to the rising value of civilization) to motivate rapid

increases in consumption sacrifices for the sake of safety. As a result, the probability

of long-term survival is always zero on the planner’s chosen path, and accelerations or

decelerations to technological development have no impact on the probability. This

is detailed in Section 3.3.4.

exponentially at rate n < ⇢, that the rate of pure time preference and exogenous risk is in fact ⇢+n,

and that the planner uses the total utilitarian social welfare function.
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3.3 The existential risk Kuznets curve

3.3.1 Optimality

Summarizing the environment of Section 3.2, the planner chooses {xt}1t=0 to maximize
Z 1

0

e
�⇢t

St u(Ct) dt, (7)

u(Ct) ⌘
C

1��

t � 1

1� �
, � > 1 (8)

subject to

A0 > 1, Ȧt = gAt (g > 0),

Ct = Atxt,

S0 = 1, Ṡt = ��tSt,

�t = �̄A
↵

t
x
�

t (�̄ > 0, � > ↵ > 0, � > 1). (9)

This section finds the path of the hazard rate in the planner’s solution, observing

that it rises and then falls with time. In the next section we will explore what this

implies for the impact of acceleration on cumulative risk.

The planner faces one choice variable, xt, and one state variable, St. Her (expected)

flow payo↵ at t is Stu(Ct). Her problem can be represented by the following current-

value Lagrangian:

Lt = Stu(Ct) + vtṠt + µt(1� xt)

= St

(Atxt)1�� � 1

1� �
� vt �̄A

↵

t
x
�

t St + µt(1� xt). (10)

µt is the Lagrange multiplier on x, positive i↵ the xt  1 constraint binds.

vt =

Z 1

t

e
�⇢(s�t)Ss

St

u(Cs)ds (11)

is the costate variable on survival: the expected value of civilization as of t.8

8The fact that the costate variable on survival must equal (11) can be seen immediately by

reflecting on the fact that, in e↵ect, the value of saving the world must equal the value of the world.

It is also derived formally in Appendix B.1.
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On an optimal path, the first-order condition on (10) with respect to the choice

variable xt is satisfied. Di↵erentiating (10) with respect to xt, we have

StA
1��

t x
��

t � �̄A
↵

t
�x

��1
t vtSt � 0, (12)

with inequality i↵ the left-hand side is positive at xt = 1, in which case xt = 1 is

optimal.9 Thus,

• As long as (12) is nonnegative at xt = 1, the optimal xt 2 [0, 1] equals 1. Any

consumption sacrifices would carry greater flow costs than expected benefits.

• When (12) is negative at xt = 1, the optimal choice of xt is interior. It sets (12)

equal to zero, maintaining the condition that the marginal loss of flow utility

from lowering consumption equals the expected benefit via risk reduction.10

In fact there is a unique11 optimal path, characterized by first-order condition (12),

a first-order condition corresponding to the state variable St, and identity (11). This

is shown in Appendix B.1. For now, our discussion will rely only on the observations

that (12) is satisfied on any optimal path, and that vt is upper-bounded by

v̄ ⌘ 1

⇢(� � 1)
. (13)

3.3.2 Initial risk increases

The condition that (12) is nonnegative at xt = 1 is equivalent to the condition that

A
�(↵+��1)
t � �̄�vt. (14)

The continuation value of civilization at t given survival to t, vt, always strictly rises

over time. This follows from the fact that, given the optimal paths {Cs}s�t and

9The second derivative with respect to xt is negative by the assumption that � > 1.
10We can ignore the possibility that optimal xt equals 0 because this yields infinite flow disutility.
11Given piecewise continuity. If path x is optimal, measure-zero deviations from x are of course

also optimal.
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{�s}s�t achievable at a given initial technology level At, a higher initial technology

level allows for a path with an equal hazard rate but more consumption at each

future period, by the assumption that � > ↵. A higher initial technology level always

enables the planner to implement a preferred future.

Suppose inequality (14) is satisfied strictly at t = 0. Then early in time, when At

is low, the optimal policy choice is x = 1, and the hazard rate rises at rate

g�t = ↵g.

3.3.3 Eventual risk declines and survival

As the left-hand side of (14) falls exponentially with At and the right-hand side rises,

there is a unique time t
⇤ at which (14) holds with equality. After t

⇤, the optimal

choice of xt is interior and sets (12) equal to zero.

Setting (12) equal to zero and rearranging, we have the optimal choice of xt after

t
⇤, and thus the optimal choice of xt in general:

xt =

8
><

>:

1, t  t
⇤;

�
�̄�A

↵+��1
t vt

�� 1
�+��1 , t > t

⇤
.

(15)

Taking the growth rate of each side, we can find the growth rate of the policy choice

variable after t⇤:

gxt = �↵ + � � 1

� + � � 1
g � 1

� + � � 1
gvt, (16)

where, given a time-dependent variable y, gyt ⌘ ẏt/yt denotes its proportional growth

rate at t. The hazard rate in turn grows as

g�t = ↵g + �gxt = �(� � ↵)(� � 1)

� + � � 1
g � �

� + � � 1
gvt. (17)

Because � > ↵ and � > 1, (17) is negative.

Furthermore, though gvt is always positive, gvt ! 0. This roughly follows from
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the fact that the expected value of the future vt is bounded above by v̄.12 This gives

us the asymptotic long-run negative growth rates gx and g�.

Finally, since Ct = Atxt, we have

gCt = g + gxt =
� � ↵

� + � � 1
g � 1

� + � � 1
gvt.

Because � > ↵, long-run consumption growth is positive: x declines to 0, but A

grows more quickly than x declines. Indeed, the growth of consumption is key to

the growth in sacrifices for safety. With decreasing marginal utility to consumption

and decreasing marginal returns to sacrifices for safety, potential consumption is split

between the former and latter so that the marginal value of each stays equal.

To summarize:

Proposition 1. The existential risk Kuznets curve

On the path defined by (7)–(9), there is a time t
⇤ � 0 such that for t < t

⇤,

xt = 1, gCt = g > 0, g�t = ↵g > 0

and for t � t
⇤,

lim
t!1

gxt = �↵ + � � 1

� + � � 1
g < 0, (18)

lim
t!1

gCt =
� � ↵

� + � � 1
g > 0, (19)

lim
t!1

g�t = �(� � ↵)(� � 1)

� + � � 1
g < 0 (20)

with all three limits approached from below.

Corollary 1.1. Survival

On the path defined by (7)–(9), S1 > 0.

The corollary follows from (20) and the definition of S1. Because �t ultimately falls

exponentially,
R1
0 �tdt < 1, so S1 ⌘ e

�
R1
0 �tdt > 0.

Note that �t ! 0 is insu�cient for survival. If �t fell to 0 too slowly, the integral

would diverge, and we would have S1 = 0.

12The gvt ! 0 limit is shown formally in Appendix B.2.
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3.3.4 No survival with �  1

As noted in Section 3.2.3, one reason for assuming � > 1 is that, when the marginal

utility of consumption declines too slowly, a rapid shift from consumption to safety

e↵ort is not implemented, and the probability of long-term survival is always zero.

This result recalls the “Russian roulette” model of Jones (2016). There, it is

found that a planner will choose to sacrifice enough consumption for safety that

a technologically induced catastrophe is not inevitable i↵ � � 1. In that model,

however, risk is posed by the development, rather than the existence, of advanced

technologies. It is thus more closely analogous to (indeed, essentially a special case

of) our “transition risk” model of Section 4, and is discussed further there.

The result also recalls, and sharpens, Jones’s (2024) observation about the impor-

tance of the coe�cient of relative risk aversion for the willingness to avoid existential

risk. Jones finds in a single-period setting that when � is low, the planner is willing to

tolerate a high risk of existential catastrophe in exchange for a spurt to consumption

growth. In a single-period setting, the tolerated risk is continuous in �; no disconti-

nuity is observed at � = 1. In the dynamic setting studied here, however, a planner

e↵ectively chooses how much risk to tolerate period after period. When �  1, enough

risk is tolerated each period that an eventual catastrophe is guaranteed.

Proposition 2. Policy choice and risk with �  1

Suppose a planner faces problem (7)–(9), but with utility function (8) replaced by

u(Ct) =

8
><

>:

log(Ct), � = 1;

C
1��
t �1
1��

, � < 1
(21)

for some �  1, and, to ensure the existence of an optimal policy,

⇢ > ⇢ ⌘ (� � ↵)(1� �)

�
g. (22)

Then there is a time t
⇤ � 0 such that for t < t

⇤,

xt = 1, gCt = g > 0, g�t = ↵g > 0
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and for t � t
⇤,

lim
t!1

gxt = �↵

�
g < 0, (23)

lim
t!1

gCt =
� � ↵

�
g > 0,

lim
t!1

�tt =
⇢

(� � ↵)g
> 0, � = 1; (24)

�
⇤ ⌘ lim

t!1
�t =

(⇢� ⇢)(1� �)

� + � � 1
> 0, � < 1. (25)

Proof. See Appendix B.2.

Corollary 2.1. No survival with �  1

On the path defined by (7)–(9), with utility function (8) replaced by (21), S1 = 0.

Proof. The result follows from (24)–(25) and the definition of S1. When �t is asymp-

totically constant or proportional to 1/t,
R1
0 �tdt = 1, so S1 ⌘ e

�
R1
0 �tdt = 0.

The case in which �t declines proportionally to 1/t, obtained by � = 1, is the edge

case in which the expected length of time until a catastrophe is infinite even though

the probability of catastrophe is 1.

Though a catastrophe is here inevitable on the chosen path, it can be seen from

(25) that faster technology growth g lowers the asymptotic hazard rate �
⇤ when

� < 1. This is essentially because, when � < 1, consumption and thus flow utility

grow at a higher exponential rate in the long run when g is higher, so the e↵ect of

raising g is similar to the e↵ect of decreasing the discount rate ⇢.

Understanding the path of policy choice and risk is somewhat more complex when

�  1 than when � > 1, because we do not have the result that vt is asymptotically

constant, but a sketch is as follows.

As in the � > 1 setting, early in time inequality (14) holds and it is optimal to
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set xt = 1. Likewise, later in time, optimality requires setting xt < 1 to maintain

Atu
0(Ct) =

@�

@x
· vt

=) Atxt C
��

t = �̄A
↵

t
�x

�

t vt

=) �t =
C

1��

t

�vt
. (26)

Observe from (11) that vt grows roughly with flow utility u(Ct). Flow utility, for large

Ct, then grows approximately like C
1��

t when � < 1. So, though consumption grows

exponentially in the long run for any �, � is asymptotically constant when � < 1.

Intuitively, for the policy path to be optimal, it must maintain

a) the flow utility to proportionally increasing consumption, Ct · C��

t

=

b) the damage done via proportionally raising the hazard rate,

which equals the hazard rate ⇥ the value of civilization.

When the value of civilization also grows like C1��

t , as it does when � < 1, the hazard

rate must be constant for (a) and (b) to grow at the same rate. When � > 1, the

value of civilization is asymptotically constant, so the hazard rate falls like C
1��

t .

When � = 1, given that consumption grows exponentially, log(Ct) and thus vt

grow linearly. The hazard rate then falls proportionally to 1/t.

3.3.5 Simulation

The paths of policy choice and the hazard rate are simulated below, for the parameter

values listed in Table 1. The values of ⇢, �, and g have been chosen as central estimates

⇢ 0.02 � 1.5 g 0.02 A0 2 ↵ 1 � 2 � 0.00012

Table 1: Simulation parameters for Figure 1

from the macroeconomics literature. A0 = 2 is chosen so that the value of a statistical

life-year at t = 75 is four times consumption per capita, roughly matching estimates
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from Klenow et al. (2023).13 That is, the first year of the simulation might be taken to

denote 1949, when a nuclear war between superpowers first became possible, in which

case the 75th year denotes the present. �̄, ↵, and � are chosen so that the hazard rate

today is approximately 0.1%, matching Stern’s (2007) oft-cited figure; so that the

hazard rate begins to fall at approximately t = 100; and so that the growth rate and

then the decay rate of the hazard rate are non-negligible, for clarity in illustration.

The probability of survival S1 under these parameters, from t = 75 onward, is

approximately 65%.
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Figure 1: Evolution of the policy choice and the hazard rate along the optimal path

Calculations and code for replicating the simulation and corresponding probability of

survival may be found in Appendix C.

As Figure 1 illustrates, one potentially unappealing feature of this simple model

13They estimate that this ratio was roughly 5 in the United States in 2019. The figure must be

adjusted upward for economic growth since 2019, but downward insofar as we are considering optimal

policy across all countries advanced enough to be deploying existentially hazardous technology.
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is that it implies that, on the optimal path, the hazard rate only rises while no

sacrifices whatsoever are made for existential safety. In this it resembles Stokey’s

(1998) “environmental Kuznets curve”, whose damages also rise exponentially with

growth and then fall sharply once it becomes optimal to take action.

As in Stokey (1998), this dynamic is driven by the lack of a lower Inada condition

on 1� x. If marginal “safety expenditures” lower the hazard rate infinitely per unit

spent at x = 1, then as long as vt > 0 it is optimal to set xt < 1, even if at first

the hazard rate is allowed to rise. Rising � can thus be found alongside falling x by

tweaking the hazard function around x = 1. Such tweaks do not a↵ect the long-run

behavior of policy or risk as given by (18)–(20), which are set by the shape of the

hazard function around x = 0. This is discussed further in Appendix A.4.1.

3.4 Acceleration and state risk

As in the tech-only model of Section 2, the impact on cumulative risk of a temporary

shock is ambiguous, but the impact of an acceleration—e.g. a permanent level or

growth e↵ect—is always to lower cumulative risk.

3.4.1 Preliminaries

Let A(·) denote the baseline technology path, given by (4). Let A⇤ ⌘ At⇤ , where t
⇤ is

defined as in Proposition 1.

Absent a negative shock severe enough to induce stagnation or recession, A crosses

every value from A0 to 1 exactly once, so the area under the hazard curve can be

defined by integrating with respect to A instead of t. We will let X denote cumulative

risk given that the technology path is A(·) and the policy path x is optimal given A(·):

X ⌘
Z 1

0

�̄A
↵

t
x
�

t dt =

Z 1

A0

�̄A
↵
x
�

A

⇣
dA

dt

⌘�1

dA

=

Z 1

A0

�̄A
↵
x
�

A
Ȧ

�1
A

dA, (27)
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where we will again abuse notation somewhat by letting xA and ȦA denote, respec-

tively, the optimal value of x (given technology path A(·)) and the value of Ȧ when

the technology level equals the subscripted A.

We will define vA and �A likewise. Note that �A ⌘ �̄A
↵
x
�

A
, without dividing this

expression by ȦA. That is, it is still a hazard rate: it represents the probability of

catastrophe per unit time at technology level A, not the probability of catastrophe

per unit of technological development.

Ã(·) is an acceleration from A 2 [A0,1) to A 2 (At,1] if Ã0 = A0 and

˙̃
AA = ȦA, A < A;

� ȦA, A = A;

> ȦA, A 2 (A,A);

= ȦA, A � A.

The acceleration is permanent if A = 1 and temporary otherwise.

Let Ã(·) be an acceleration from A. Define ṽA such that at A < A, ṽA = vA,

and at A � A, ṽA is the costate variable on survival at A given that the subsequent

technology path is Ã(·). Then x̃A is defined to equal (15) with A, ṽA in place of At, vt;

�̃A ⌘ �(A, x̃A); and X̃ ⌘
R1
A0

�̃A
˙̃
A

�1
A
dA.

Given a baseline technology level A and a technology growth rate ˙̃
A > ȦA, denote

by Ã(·)[✏] the acceleration from A to A+ ✏ with

˙̃
AA = ˙̃

A, A 2 [A,A+ ✏).

Then the e↵ect on cumulative risk, per unit of technological development, of instan-

taneously accelerating to ˙̃
A at A is defined to be

�
A,

˙̃
A
⌘ lim

✏!0

�
X̃[✏]�X

�
/✏,

where X̃[✏] is cumulative risk X̃, as defined above, given acceleration Ã(·)[✏].14

14The e↵ect on an instantaneous acceleration on cumulative risk per unit time is �
A, ˙̃A

˙̃A, since
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3.4.2 Three shocks

Instantaneous level e↵ects — The e↵ect per unit time of a positive shock to the tech-

nology level At, letting policy adjust instantaneously, depends on whether the shock

occurs before or after the regime-change time t
⇤. At t < t

⇤, temporarily multiplying

the technology level by m > 1 has no impact on the optimal choice of x.15 The hazard

rate thus rises. The future hazard rate is una↵ected, so cumulative risk increases by

�t(m
↵ � 1) > 0

per unit of time that the technology level is raised.

At t � t
⇤, temporarily multiplying the technology level by m > 1 multiplies the

policy variable by m
�↵+��1

�+��1 , by (15). In combination, the positive shock to tech-

nology and the negative impact on the policy variable multiply the hazard rate by

m
↵��

↵+��1
�+��1 = m

� (��↵)(��1)
�+��1 < 1. This resulting change in cumulative risk is

�t

�
m

� (��↵)(��1)
�+��1 � 1

�
< 0

per unit of time that the technology level is raised.

Instantaneous accelerations — Multiplying the technology growth rate at t by m > 1

lowers cumulative risk (per unit of time that the shock lasts) regardless of t. It does

so only because the shock decreases the time spent at technology levels around At.

The shock has no impact on the policy associated with any technology level.

As in the tech-only model, therefore, we see that the impact of this shock on

cumulative risk per unit of increase to the technology level during the acceleration is

�t((mȦt)
�1 � Ȧ

�1
t
) < 0.

So the impact on cumulative risk per unit of time that the acceleration lasts is the

during the acceleration, ˙̃A units of technology are developed per unit time. This is of the same sign.
15Unless m is large enough to reverse inequality (14), a case we will ignore for simplicity.
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above multiplied by the new technology growth rate mȦt:

�t(1�m) < 0.

Accelerations — Consider a sharp temporary acceleration, in which the technology

level jumps at t from At to A > At and exponential technology growth is subsequently

maintained. Since in this model optimal policy is independent of history, this technol-

ogy shock amounts to a “leap forward in time”. The resulting impact on cumulative

risk is

�
Z

A

At

�AȦ
�1
A

dA.

More generally, an acceleration from A to A can lower the risk endured at the

given range of technology levels for two reasons.

1. As in the tech-only model, increasing the technology growth rate at A always

lowers cumulative risk directly because the exponent on ȦA in integral (27) is

negative: ˙̃
A

�1
A

< Ȧ
�1
A
.

2. Going beyond the tech-only model, given A 2 [At, A), the value of the future

at A is higher given faster future technology growth: ṽA > vA. By (15), this

motivates weakly more stringent policy x̃A  xA and thus a weakly lower hazard

rate �̃A  �A. If
˙̃
AA < 1, the lower hazard rate at A lowers cumulative risk.

Via the first channel alone, the change in cumulative risk achieved by an acceleration is

the integral, across technology levels, of the risk reductions achieved by instantaneous

accelerations at each technology level:

Z
A

At

�A(
˙̃
A

�1
A

� Ȧ
�1
A
)dA < 0.

Given a policy impact, the cumulative risk reduction achieved is greater.

To summarize:
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Proposition 3. Acceleration and state risk

An instantaneous acceleration at A to ˙̃
A > ȦA decreases cumulative risk per unit of

technological development during which it endures:

a) �
A,

˙̃
A
= �A(

˙̃
A

�1 � Ȧ
�1
A
) < 0.

An acceleration Ã(·) from A to A decreases cumulative risk (and does so by weakly

more than the corresponding integral of instantaneous accelerations):

b) X̃  X +
R

A

A
�

A,
˙̃
AA

dA < X, with equality strict only if A  A
⇤.

The impact of a shock to growth on the probability of survival is explored in the

strictly more general model of Appendix A.3. The generalized results are given and

proved there in Proposition 8.

3.4.3 Simulation

The e↵ects of a sharp temporary acceleration are illustrated in Figure 2. The pa-

rameter values used to illustrate the baseline path are the same as those used to

simulate Figure 1. The acceleration takes place “today”, at t = 75, and multiplies A

by e
0.2 ⇡ 1.22, so that at g = 0.02, it amounts to a 10-year leap forward.

Recall from Section 3.3.5 that the probability of survival (from t = 75 onward) on

the baseline path is approximately 65%. The proportional increase in the probability

of survival can be found analytically. Cumulative risk X declines by precisely the area

under the baseline hazard curve from t = 75 to 85; and since �75 = 0.1%, g = 0.02,

and ↵ = 1, this di↵erence equals

�X = �0.001

Z 10

0

e
0.02t

dt = �0.05(e0.2 � 1).

S1 = e
�X is then multiplied by e

��X ⇡ 1.011, so that in absolute terms S1 rises by

approximately 0.65 · 0.011 ⇡ 0.7%.
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Figure 2: Acceleration shrinks cumulative risk

Calculations and code for replicating the simulation may be found in Appendix C.

3.4.4 Discussion

Slow growth makes catastrophe inevitable — As noted in Section 2.2, a permanent

negative acceleration, or “deceleration”, can render survival impossible: e.g. if it

induces stagnation.

In this simple setting, the technology conditions necessary for survival can be

stated more precisely. Consider a permanent deceleration after which technology

grows power-functionally, so that Ãt = t
k for some k > 0. The exponential growth

rate of Ã, denoted g̃, is then not constant at g but time-varying, with g̃t = k/t. By

(17) and since g̃v ! 0, �t then falls to 0 like t
� (↵��)(��1)

�+��1 k. Since cumulative risk is

finite for �t / t
� i↵  > 1, the probability of survival is positive i↵

k >
� + � � 1

(↵� �)(� � 1)
. (28)
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Growth vs. patience — Faster growth increases the willingness to pay for safety. By

contrast, those concerned about the safety of the long-term future often attempt to

increase others’ willingness to pay for safety via ethical arguments for a low rate of

time preference. Consider e.g. the Stern–Nordhaus debate (and the long debate since)

over the discount rate to use in climate policy, or the arguments for concern for the

future made by philosophers such as Parfit (1984), Cowen and Parfit (1992), Ord

(2020), and MacAskill (2022).

The two interventions have similar impacts on the probability of survival, as

detailed in Appendix A.2. An intuition is as follows. If A is permanently multiplied

by m, then, fixing policy, the marginal utility of consumption is multiplied by

m
��, and the value of the future is unchanged in the limit at v̄ = 1

⇢(��1) . If ⇢ is

permanently divided by m, then, fixing policy, the value of the future is multiplied

by m; the marginal utility of consumption is unchanged. Policy equates the marginal

utility of consumption with the marginal value of safety expenditure, which is

proportional to v. As a result, increases in patience and in technology induce com-

parable policy responses, and ultimately comparably a↵ect the probability of survival.

Acceleration can lower life expectancy — As we have seen, accelerations always in-

crease the probability of survival under the assumptions of Section 3.2. One might

thus expect that in the � < 1 case of Section 3.3.4, in which catastrophe is inevitable

and civilizational “life expectancy” is finite, accelerations increase this life expectancy.

However, this does not necessarily hold.

At any value of �, stagnation at a low technology level A yields a permanent hazard

rate of �̄A↵. This may be arbitrarily low, so the expected duration until catastrophe

1/(�̄A↵) may be arbitrarily high. When � < 1, an acceleration can quickly yield a

hazard rate that permanently approximates �⇤ (25). The acceleration can thus lower

civilizational life expectancy to approximately 1/�⇤.
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4 Transition risk

4.1 Motivation

A hazard function of the form �(At, xt) captures what we have called “state risk”: �

depends on the level of technology. On this framing, it is perhaps unsurprising that

escaping risky states more quickly lowers cumulative risk.

But risk may instead be “transitional”: posed by technological development. This

is the intuition captured by Jones’s (2016) “Russian roulette” model of technological

development and (2024) model of AI risk, and by Bostrom’s (2019) analogy to drawing

potentially destructive balls from an urn. Perhaps stagnation at a given level of tech-

nology is essentially safe, and risk arises in the process of discovering and deploying

new technologies with unknown consequences. If so, given a positive-growth baseline,

does accelerating technological development further increase cumulative risk?

4.2 A transition-risk-based hazard function

To explore this possibility, suppose � increases in Ȧt instead of, or as well as, in At.

We will again restrict our consideration to a constant elasticity hazard function:

�t = �̄A
↵

t
Ȧ

⇣

tx
�

t , �̄ > 0, ⇣ � 0, � > 1. (29)

Our original hazard function (5) is the special case of (29) with ⇣ = 0 (and � >

↵ > 0). This model is thus a generalization of hazard function (5), complementary

to that of Appendix A.3.

If ⇣ > 0, however, the model is most naturally interpreted as one in which risk is

posed by the introduction of new technologies—new “draws from Bostrom’s urn”—

which consist of absolute increases to A. Fixing policy, introducing multiple technolo-

gies can pose more, less, or equal risk if done concurrently than if done in sequence,

depending on the sign of ⇣ � 1. Introducing more advanced technologies can pose

more, less, or equal risk than less advanced, depending on the sign of ↵.
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Alternatively, to interpret one “new technology” as a proportional increase to A,

simply rewrite the hazard function as

�t = �̄A
↵+⇣

t

⇣
Ȧt

At

⌘⇣
x
�

t .

On this interpretation, ↵ + ⇣ > 0 is the condition under which developing more

advanced technologies poses more risk than developing less advanced technologies.

Because Ȧ/A has been roughly constant through the last century, the view that the

hazard rate has risen must be attributed to the increasing danger of each “technolog-

ical development” in this sense.

Finally, consider the case of ↵ = �1, ⇣ = 1, so that

�t = �̄
Ȧt

At

x
�

t .

Here, fixing x, each proportional increase to A induces a constant hazard, indepen-

dently of how quickly the increase occurs. In the absence of policy—with x = 1 (or

any other constant) permanently—this model is essentially equivalent to the “Russian

roulette” model of Jones (2016)16 and the AI risk model of Jones (2024).

4.3 Acceleration and transition risk

4.3.1 Without mitigation

Suppose that the baseline technology path A(·) is continuously di↵erentiable, with a

positive derivative. Let Â ⌘ limt!1 At be finite or infinite.

As implied above, fixing policy, whether acceleration increases or decreases cumu-

lative risk depends on whether ⇣ is greater or less than 1. This can, as usual, be seen

most clearly by integrating the hazard curve with respect to A:

X =

Z 1

0

�̄A
↵

t
Ȧ

⇣

tdt =

Z
Â

A0

�̄A
↵
Ȧ

⇣�1
A

dA.

16Our �̄ is the variable there denoted ⇡.



31

Given acceleration Ã(·) from A 2 [A0, Â) to A 2 (A, Â], cumulative risk equals

X̃ = X +

Z
A

A

�̄A
↵
� ˙̃
A

⇣�1 � Ȧ
⇣�1
A

�
dA.

The integral is negative if ⇣ < 1, zero if ⇣ = 1, and positive if ⇣ > 1.

In the Russian roulette model, for instance, though there is a technology level

Â < 1 at which it is optimal to halt technological development (Appendix A.5),

accelerating technological development before Â does not a↵ect cumulative risk.

4.3.2 With mitigation

In Section 2, we saw that acceleration weakly lowered cumulative state risk absent

policy. In Section 3, we saw that the tendency of acceleration to lower cumulative

state risk was amplified by the presence of optimal policy. Here, we have seen that

the impact of acceleration on cumulative transition risk is ambiguous absent policy.

We will now see that it remains ambiguous given optimal policy, but that policy can

reintroduce a tendency for acceleration to lower cumulative risk.

For simplicity, we will now again impose the assumption that A grows at a constant

exponential rate g. Also, since given exponential growth g
Ȧ
= g, we will impose

� > ↵ + ⇣, (30)

which, rather than � > ↵, is now the condition necessary for survival without Ct =

Atxt ! 0. Under these conditions, since Ȧ is proportional to A, the planner’s problem

is precisely as described in Section 3.3, with ↵ + ⇣ taking the place of ↵ (up to

a coe�cient g
⇣ that can be rolled into �̄). Baseline x and � paths, and S1, are

unchanged. The existential risk Kuznets curve remains.

Let A⇤ denote the uppermost technology level at which it is optimal to set x = 1

on the baseline technology path. Since the first-order condition

@u

@xt

(At, xt) �
@�

@xt

(At, xt)vt =) A
1��

t x
��

t � �̄A
↵

t
�x

��1
t vt
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must be satisfied everywhere and hold with equality for x < 1, we have

xA =

8
><

>:

1 A  A
⇤
,

⇣
�̄�A

↵+��1
Ȧ

⇣

A
vA

⌘� 1
�+��1

A > A
⇤
.

(31)

Substituting (31) into the expression for cumulative risk

X =

Z 1

A0

�̄A
↵
Ȧ

⇣�1
A

x
�

A
dA, (32)

we have

X =

Z
A

⇤

A0

�̄A
↵
Ȧ

⇣�1
A

dA+

Z 1

A⇤

�
�̄
1��

�
�
A

(��↵)(��1)
v
�

A

�� 1
�+��1 Ȧ

⇣
��1

�+��1�1

A
dA. (33)

Recall that a technology path Ã(·) is an acceleration if ˙̃
AA > Ȧ for technology

levels A 2 [A0,1) to A 2 (A  1]. With or without policy, an acceleration a↵ects

cumulative risk directly, by changing the technology growth rate from A to A. With

policy, an acceleration also a↵ects cumulative risk indirectly by a↵ecting vA for A 2

[A,A), which a↵ects policy at this range of technology levels.

Under the hazard functions of the previous sections, as we have seen, faster tech-

nology growth is always weakly preferred. This follows from the fact that it is feasible

to o↵set higher values of At with lower choices of xt, such that the original consump-

tion path is maintained, and from the assumption from � > ↵ that given this policy

response, the hazard curve is weakly lowered. Since a future with faster growth is

more valuable, an acceleration from A to A raises vA for A 2 [A,A).

Under hazard function (29), this argument is no longer valid. This is because, un-

like an increase to At, an increase to Ȧt brings no contemporaneous benefit, though

it imposes risks that can still be mitigated only with less contemporaneous consump-

tion. And indeed, under hazard function (29), faster technology growth is no longer

always preferred. We can see this most straightforwardly in the case of ↵ = �1,

⇣ = 1: again, this is the Russian roulette model of Jones (2016), and as Jones finds,

with � > 1, it is optimal for technology to grow only to a finite level. In the more
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general model here, the result that stagnation is optimal is knife-edge, as discussed

in Appendix A.5. Nevertheless, the result that an acceleration from A to A does not

necessarily yield ṽA � vA for A 2 [A,A) holds more generally.

These complexities are avoided when we focus on instantaneous accelerations. The

impact of an acceleration from A to A on vA, for A 2 [A,A), falls to zero as A�A ! 0.

The impact of a brief acceleration on cumulative risk is therefore approximately the

impact found when we ignore impacts on vA.

Proposition 4. Instantaneous acceleration and transition risk

Given hazard function (29) and technology path (4), choose a technology level A > 1

and growth rate ˙̃
A > ȦA. If

a. A � A
⇤ and ⇣ < (=, >) 1 + �

��1 , or

b. A < A
⇤, ⇣ < (=, >) 1, and ˙̃

A maintains (31) = 1 at A = A,

then �
A,

˙̃
A
< (=, >) 0.

Proof. See Appendix B.3.

The result follows essentially immediately from the exponent on ȦA in (32). In

particular, instantaneous acceleration after A⇤ lowers cumulative risk as long as

⇣
� � 1

� + � � 1
� 1 < 0 =) ⇣ < 1 +

�

� � 1
. (34)

It is su�cient, though not necessary, for (34) that

⇣  1 or ↵ � �1, �  2.

The ⇣  1 case follows from the fact that ��1
�+��1 < 1. The ↵ � �1, �  2 case

follows from the fact that if ↵ � �1, then, by (30), ⇣ < � + 1, so ⇣

�+1 < 1. Since

macroeconomic estimates of �  2 are standard, this result suggests that accelerations

lower cumulative risk on the optimal path in the context of transition risk, at least if

they occur late enough in time that mitigation is already underway.
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Furthermore, this is, again, even without considering the fact that an increase

to future growth can change the value of the future. Though the direction of this

change is in principle ambiguous, most observers today take it for granted that, at

least on a conventional discount rate, faster technology growth would be a benefit on

the current margin. This would then be another channel through which a (positive-

duration) acceleration would motivate greater concerns today for safety.

It may be counterintuitive that instantaneous acceleration reduces risk only when

� lies below a bound, because when � is higher, the marginal utility of consumption

is lower and it is optimal to shift resources from consumption to safety more rapidly.

The result stems from the fact that, when � is high, the marginal utility of consump-

tion rises rapidly as x is cut, so following an acceleration, a small cut to x su�ces to

equalize the marginal utility of consumption with the marginal value of safety spend-

ing. The higher � is, the more quickly x falls as A rises, but the less sensitive x is to

a change in @�/@x—e.g. an increase due to higher Ȧ—at a given value of A.

4.3.3 Discussion

The nonrivalry of safety e↵ort — Hazard function (29) is explored here mainly for its

simplicity and similarity to (5). One valid criticism of this functional form is that it

overemphasizes a channel through which the risks posed by a series of technological

developments can be cheaper to mitigate if they occur at once than if they occur in

sequence. Suppose that � ⇡ 1, that ⇣ = 1, and that two small increases to Ȧ—let us

call them two “experiments”—can occur in sequence or simultaneously. If they occur

in sequence, halving the risk posed by each requires halving x and thus consumption

for two periods in a row. If the experiments occur simultaneously, the same reduction

in cumulative risk only requires halving consumption once.

For some kinds of experiments and some kinds of safety infrastructure, the as-

sumption that safety e↵orts are “nonrival” in this sense is reasonable. Wastewater

monitoring for the sake of early pandemic detection reduces the risk posed by poten-
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tially pandemic-inducing biological experiments by a proportion independent of how

many experiments are underway.

In other cases, however, it is not reasonable. It does not apply, for instance, to

the costs of the safety equipment that must be used at each lab. Safety e↵orts of this

kind might be better modeled by a modified version of the “safety in redundancy”

model of Appendix A.4.2.

A thorough attempt to shed light on the relationship between growth and

transition risk would require further study. Nevertheless, the basic model explored

here o↵ers two lessons. First, in the absence of policy, the e↵ect of acceleration on

transition risk is ambiguous, and there is no e↵ect in the arguably central “⇣ = 1”

case assumed by Jones (2016, 2024). Second, the presence of an optimal policy

response can shift the relevant “⇣” threshold, in particular significantly shifting it

upward to the extent that safety e↵orts are nonrival across contemporaneous risks.

Stagnation vs. deceleration — When ⇣ > 0, complete stagnation (Ȧ = 0) is always

the safest path of all. Nevertheless, we have seen with and without policy that given

a positive growth rate, faster growth can decrease risk.

The key to this puzzle is that, given stagnation at Â, levels of A > Â are never

attained. Cumulative risk is therefore not (32) but (32) with the 1 replaced with Â.

Absent stagnation, however slow the growth rate, all levels of A are attained. The

growth rate only determines the risk endured at each one. The direct cost of faster

progress during a given range of A-values (higher risk per unit time, to the extent

that ⇣ > 0) is partially, and may be more than fully, outweighed by the fact that

faster progress motivates more mitigation at each point in time, in combination with

the now familiar fact that when progress is faster we do not linger in a given range

of A-values as long.
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5 Conclusion

Human activity can create or mitigate existential risks. The framework presented

here illustrates that, under various conditions, existential risk should be expected to

exhibit a Kuznets curve. This observation o↵ers a potential economic explanation for

the claim by some prominent thinkers that humanity is in a critical “time of perils”.

We may be advanced enough to be able to destroy ourselves, but not yet enough that

we are willing to make large sacrifices for the sake of safety. If we are indeed living

through the time of perils, reductions to existential risk today have massive expected

long-term consequences.

At the same time, this framework highlights a channel through which some ef-

forts intended to reduce existential risk may backfire. In the absence of policy, when

risk is posed by the existence of advanced technologies, broad-based decelerations to

technological development typically worsen or do not a↵ect the odds of long-term

survival. Given an optimal policy response, even by a policymaker with little care for

the long-term future, this impact is magnified. The impact can be significant, with

proportional consumption decreases having comparable impacts to proportional in-

creases in the planner’s rate of time preference. In the extreme, permanent stagnation

can make a catastrophe inevitable that might otherwise have been avoided.

This lesson comes with three caveats. First, it is not an argument against regu-

lating the use of risky technologies. Indeed, a primary channel explored here through

which technological development lowers risk is that it hastens the day when regula-

tion is severe. Some recent reactions to calls for heavy AI regulation, e.g. that of

Andreessen (2023), might be read as expressing the view that our “x” should never

be set far below one. If that is so, it is not for reasons presented in this paper.

Second, when risk is posed by the development of advanced technologies, the e↵ect

of acceleration on risk is more ambiguous. In the “transition risk” models of Jones

(2016, 2024), acceleration does not a↵ect cumulative risk in the absence of policy.

Under slight modifications to these models, the impact may be positive or negative.
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Policy may strengthen the tendency for acceleration to weakly decrease cumulative

risk, as the model of Section 4 illustrates. It seems likely, however, that under some

plausible models, policy would dilute or overturn this tendency.

Third, where we have found that policy magnifies a negative link between acceler-

ation and cumulative risk, we have assumed that policy is optimal. If it is not, then

the impact of acceleration on cumulative risk may be reduced or even overturned,

as illustrated in Section 3.1. In fact, Shulman and Thornley (2024) argue that the

policy response to hazardous technologies to date has been far from optimal, even

with respect to a conventional discount rate. The appropriate lesson to draw about

the impact of policy on the relationship between acceleration and risk is only that, to

the extent that the regulatory regime equates or will eventually equate the marginal

utility of consumption to the marginal expected discounted utility of safety expen-

diture, consumption-increasing technological development today has the unseen but

potentially large benefit of speeding future safety e↵orts. For slowing technological

development to lower cumulative risk, the policy failure in question must be severe

and lasting enough to outweigh this benefit.

In this light, further research on the nature of policy distortions around the reg-

ulation of hazardous technologies would be valuable. Exploring the long-term impli-

cations of other models of anthropogenic existential risk, and of optimal policy in the

face of it, could be valuable as well, to better characterize the scope of the result that

optimally regulated acceleration weakly lowers cumulative risk. If plausible models

are found under which the result is overturned, this will naturally pose important

questions which can only be answered empirically. For now, however, the results

presented here suggest that even those exclusively concerned with reducing cumula-

tive existential risk should often cheer technological advances despite their short-term

hazards, and advocate risk-reduction measures today only when they are su�ciently

targeted and the costs to technological development are su�ciently small.
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Appendices

A Supplemental materials

A.1 Calibrating the elasticity of the hazard rate to safety

expenditures

Shulman and Thornley (2024) estimate that well-targeted expenditures of $400B over

the next decade would reduce the probability of existential catastrophe over the next

decade by at least 0.1% in absolute terms, from a baseline of 1.85%.

The scale of the magnitude of the risk is taken from Ord’s (2020, p. 167) educated

guesses and may be disputed. However, an estimate of � depends only on the propor-

tion by which a given consumption sacrifice will reduce the hazard rate. We will rely

on Shulman and Thornley’s assessment that expenditures of $400B would multiply

the probability of existential catastrophe over the next decade by at most

1� 0.1%

1.85%
⇡ 0.946, (35)

while remaining agnostic about the the magnitude of the probability. For instance, we

are trusting their assessments of the extent to which disease monitoring expenditures

would be able to prevent existentially hazardous anthropogenic pandemics by helping

authorities to contain them early, while remaining agnostic about the probability per

year that such a pandemic will arise.

Global consumption per year is currently approximately $72.5T (World Bank,

2022). If real consumption grows at 2% per year and the relevant interest rate is

5% per year, the present value of global consumption over the next ten years is

approximately $72.5T ⇥ (1 � e
�10(0.05�0.02))/(0.05 � 0.02) ⇡ $626.4T. A sacrifice of

$400B = $0.4T in today’s dollars over the next decade is thus a sacrifice that multiplies

consumption by a fraction of

1� 0.4

626.4
⇡ 0.99936. (36)
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Given x
�
< 0.946 at x ⇡ 0.99936, it follows that

� >
log(0.946)

log(0.99936)
⇡ 86.7.

This exercise of course tells us nothing about whether it is reasonable to assume a

constant-elasticity hazard function in general. If the Shulman and Thornley estimate

is correct within three orders of magnitude, however, it does prove that the hazard

function is currently convex over at least some range of feasible consumption levels.

This follows immediately from the facts that (36) > (35) and that the hazard rate

cannot be cut by a proportion greater than one.

A.2 State risk with mitigation: growth vs. patience

A sharp and permanent level e↵ect at t, whereby A is multiplied by m slightly greater

than 1, amounts to a leap forward of approximately m/g years. This decreases cu-

mulative risk by approximately �tm/g.

Before t
⇤, therefore, the impact of a level e↵ect on cumulative risk rises exponen-

tially with �t. Early in time �t may be arbitrarily low, so the impact of the level e↵ect

on cumulative risk may as well. The impact of a decrease to ⇢ on cumulative risk,

on the other hand, does not change over time before t
⇤. A decrease to ⇢ does not

a↵ect the hazard rate immediately, but decreases it in the future by pulling forward

the regime-change time and changing the path of the hazard rate afterward. These

impacts do not depend on when (before t
⇤) ⇢ is lowered.

By contrast, consider what happens as vt ! v̄. By (15), in the limit,

xt ⇡
�
�̄�v̄

�� 1
�+��1A

�↵+��1
�+��1

t . (37)

At large t, permanently multiplying A by m > 1 multiplies xs, at each s � t, by

approximately m
�↵+��1

�+��1 . In conjunction, the increase to As and the proportional

decrease to xs multiply �s by m
� (��↵)(��1)

�+��1 for s � t. Similarly, permanently dividing ⇢

by m > 1 multiplies xs (s � t) by approximately m
� 1

�+��1 , which multiplies �s (s � t)
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by approximately m
� �

�+��1 . The impacts are equal i↵

(� � ↵)(� � 1) = �

() � = 2 +
↵

� � ↵
, (38)

with the level e↵ect more impactful if the left-hand side is greater and the decrease to

⇢ more impactful if the right-hand side is greater. The growth-based intervention is

more impactful when � is higher, because higher values of � motivate faster transitions

from consumption to risk-reduction.

Since � > ↵ > 0, expression (38) reveals that the level e↵ect can only be more

impactful in this model if � > 2. Still, it is notable that mere level e↵ects to growth

can ultimately a↵ect the probability of survival at a comparable scale to permanent,

equally-proportioned decreases to the social rate of pure time preference (holding

technology growth fixed). Put another way, even temporary stagnation can carry

long-term costs similar to those of permanently moving ethical attitudes away from

concern for the future.

A.3 State risk with mitigation: generalized results

Sections 3.3–3.4 are set in the environment of Section 3.2. The three components of

this environment are the technology path, the function from technology and policy

to the hazard rate, and the utility function. A functional form is assumed for each.

Here we will maintain CRRA utility with � > 1. We will however greatly relax our

assumptions on the technology path and the hazard rate, to identify the conditions

under which the lessons of Sections 3.3–3.4 are maintained.

In Sections A.3.2–A.3.3, generalizing Proposition 1 from Section 3.3, we find that

growth motivates increasing concern for safety: it is often optimal to set x = 1 early

in time and x ! 0 late in time. A central result is that, unless lowering risk is so

di�cult that it is not achieved even with stagnation in consumption, the hazard rate

is also driven to 0.
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In Section A.3.4, generalizing Section 3.4, we likewise find that when a hazard

function is compatible with survival, faster technology growth generally increases

the probability of survival. The results support the robustness of the lessons drawn

from hazard function (5): that survival is likely possible on the optimal path, and that

faster consumption technology growth, if optimally regulated, will raise its probability.

A.3.1 Assumptions

Assumptions on technology growth — We will assume throughout only that the tech-

nology path A(·) satisfies some or all of the following conditions:

A1. right-continuous di↵erentiability with Ȧt > 0 for all t;

A2. A0 > 1;

A3. limt!�1 At = 0; and

A4. limt!1 At = 1.

We will call a technology path A(·) admissible if it satisfies A1–A4.

Assumptions on the hazard rate — We will also consider a wider class of hazard

functions. Among these, we will find relatively simple conditions under which a given

hazard function and a given technology growth path are compatible with survival on

the planner’s policy.

Return to the three desiderata preceding the introduction of hazard function (5).

We will assume weakenings of two of these desiderata directly, and certain results will

require a weakening of the third. In particular, we will assume that the hazard rate

increases in x no less quickly than in A and is weakly convex in x. For certain results

we will assume that the hazard rate does not decrease too quickly in A.

We will add to these the preliminary conditions that �(·) is continuously di↵eren-

tiable; that, when consumption equals zero, so that the entire productive capacity of
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society is dedicated to existential risk reduction, � = 0; and that otherwise � > 0.17

Formally, we will assume at most that the hazard rate is a function of A > 0 and

x 2 (0, 1] satisfying the following conditions:

D1. �(A, x) > 0,

D2. limx!0 �(A, x) = limA!0 �(A, x) = 0,

D3. twice continuous di↵erentiability,18

D4. ⌘x(A, x) � ⌘A(A, x), and

D5. weak concavity in x,

where ⌘y denotes the elasticity of � with respect to y 2 {A, x}. We will call a hazard

function admissible if it satisfies D1–D5.

Note that the constant elasticity hazard function of Sections 3.2–3.4 is admissible,

with ⌘A = ↵ and ⌘x = � independent of A and x. Note also that we do not require

⌘A(A, x) always to be positive: we allow new technologies to lower the hazard rate at

a given degree of foregone consumption.

A.3.2 The end of consumption growth

Let C⇤ ⌘ limt!1 Atxt, when this limit is defined.

Given hazard function (5), C⇤ = 1, by (19) from Proposition 1. However, some

admissible hazard functions motivate decreases to x fast enough that we do not have

C
⇤ = 1. C⇤ may be finite, or Ct may oscillate indefinitely.

Proposition 5. The end of consumption growth

17Recall that the hazard rate denotes the flow probability of anthropogenic existential catastrophe.
18We will define @�

@y (A, 1) ⌘ limx!1
@�
@y (A, x) for y 2 {A, x}, and allow these derivatives to be

infinite.
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Given an admissible hazard function �(·), define

R(C) ⌘ lim
A!1

@�

@x

⇣
A,

C

A

⌘
C

�

A
v̄, (39)

R
⇤ ⌘ lim

C!1
R(C).

Given an admissible technology path and hazard function,

a) If R⇤  1, then C
⇤ = 1.

b) If R⇤
> 1, then C

⇤ 6= 1.

Proof. See Appendix B.4.

To interpret the result, recall that x = C/A. (39) characterizes, if C is fixed even as

A grows, what happens to the ratio of the marginal value of lowering x via increased

safety ( @�
@x
·v) to the marginal utility of raising x via increased consumption (AC��). If

the ratio approaches 1, then it is optimal for consumption to stagnate in the long run

at C. If the ratio is greater than 1 for su�ciently large C, therefore, then stagnation

at some finite C is optimal.

Recall from (13) that v̄ ⌘ 1
⇢(��1) . When R(C) > 0, therefore, R(C) decreases in ⇢.

A lower discount rate can thus shift R⇤ from below to above 1, resulting in stagnation

when there would otherwise have been long-run consumption growth, but never the

reverse. Consumption stagnation is not in general desirable when ⇢ is su�ciently

low, or undesirable when ⇢ is su�ciently large: for many hazard functions, as shown

at the end of the next subsection, R⇤ is above 1 (even infinite) or below 1 (even

0) for any ⇢ > 0. Still, Proposition 5 illustrates how calls for an “end to growth”

may be compatible with this model. Concern for the future can motivate controls on

technological deployment strict enough to halt growth in consumption, despite the

tendency for accelerating technological development to lower cumulative risk.
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A.3.3 The Kuznets curve generalized

Proposition 6. The Kuznets curve generalized

Given an admissible technology path and hazard function,

a) limt!�1 xt = 1.

If ⌘A is bounded above 1� �, then limt!1 xt = 0.

b) limt!�1 �t = 0.

If C⇤ = 1, then limt!1 �t = 0.

If C⇤ 6= 1, ⌘A is bounded above 1� �, and ⌘x is upper-bounded, then

limt!1 �t 6= 0.

Proof. The proof of (a) is given in Appendix B.5. The proof of (b) is as follows.

By D1, D2, and D5, �(A, x) is non-decreasing in x. So for all t, �t  �(At, 1). By

D2, limA!0 �(A, 1) = 0. So by A3, limt!�1 �t = 0.

For the positive limit, begin with the weak first-order condition that the marginal

flow utility of increasing x must weakly exceed the marginal cost via an increased

hazard rate. Then multiply both sides by xt:

A
1��

t x
��

t � @�

@x
(At, xt) vt

=) (Atxt)
1�� � @�

@x
(At, xt)xt vt. (40)

If C⇤ = 1, the left-hand side of (40) tends to 0. Since v is (eventually) positive and

does not fall by D4, @�

@x
x ! 0. Since @�

@x
x � � by D1 and D5, � ! 0.

If ⌘A is bounded above 1 � �, limt!1 xt = 0 by (a). Since eventually xt < 1,

eventually (40) holds with equality. If C⇤ 6= 1, the left-hand side does not tend to

0 in the limit. Because vt is upper-bounded,
@�

@x
x does not tend to zero either. So if

⌘x ⌘ @�

@x

x

�
is upper-bounded, � 6! 0.

Part (b) of the proposition stems from the fact that, as long as consumption rises

without bound, its marginal utility falls to zero. If the hazard rate does not also
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fall to zero, the marginal value of sacrificing consumption to lower it further stays

positive. The hazard rate must therefore fall to zero.

Even so, unbounded consumption growth does not necessarily coincide with a

positive probability of survival. To achieve S1 > 0, �t must not only fall to 0

but fall su�ciently quickly. This in turn is guaranteed whenever consumption rises

su�ciently quickly, which holds under a strengthening of the condition for unbounded

consumption growth from Proposition 5.

Proposition 7. Survival generalized

Given an admissible hazard function �(·) and an admissible technology path A(·) such

that, for some k > 1 and some t we have

At � t
k

��1 8t > t, (41)

define

R̃(k) ⌘ lim
t!1

@�

@x

⇣
At,

t
k

��1

At

⌘
t

k�
��1

At

v̄.

a) If limk#1 R̃(k) < 1, then 9t : Ct > t
1

��1 8t > t and S1 > 0.

b) If limk"1 R̃(k) > 1, then 9t : Ct < t
1

��1 8t > t.

If in addition ⌘x is upper-bounded, then S1 = 0.

Proof. See Appendix B.6.

Observe that, similar to R(·), R̃(k) is the long-run ratio of the marginal value of

lowering risk to the marginal value of increasing consumption when

Ct / t
k

��1 . (42)

If R̃(k) < 1 on this consumption path, for some k > 1, then on this path consump-

tion grows too slowly. It is eventually preferable to raise xt above its implied level

of approximately t
k

��1/At. So if limk#1 R̃(k) < 1, Ct eventually grows more quickly
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than (42) for some k > 1 on the optimal path. Conversely, if limk"1 R̃(k) � 1, Ct

eventually grows more slowly than (42) for k = 1.

If Ct grows more quickly than (42) for some k > 1, then the left-hand side of

(40) falls more quickly than t
�k for some k > 1. So @�

@x
x does as well. Recalling that

� <
@�

@x
x, this ensures a positive probability of survival.

If Ct grows more slowly than (42) for k = 1, then the left-hand side of (40)

falls more slowly than 1/t. The right-hand side equals @�

@x
x · v = ⌘x/� · v. If ⌘x is

upper-bounded, � falls more slowly than 1/t. Cumulative risk is therefore infinite,

and survival is impossible.

For illustration, let us evaluate the constant elasticity hazard function of Section 3.2

for the case of exponential growth at rate g.

R̃(k) = lim
t!1

�̄e
↵gt

�

⇣
t

k
��1

egt

⌘��1 t
k�
��1

egt
v̄

= �̄�v̄ lim
t!1

e
�(��↵)gt

t
�+��1
��1 k = 0 (43)

for any k, since � > ↵. So limk#1 R̃(k) = 0 < 1. Part (a) of Proposition 7 thus

generalizes the conclusion of 28 that, with hazard function (5), consumption grows

at least as quickly as a su�cient power function (in fact it grows exponentially) and

that there is a positive probability of survival.

By contrast, consider the constant elasticity hazard function but with ↵ = �. In

this case, (43) = 1 for any k, so limk"1 R̃(k) = 1 > 1. Also, ⌘x is constant at

�, and so upper-bounded. �(A, x) = Ax is thus an example of a hazard function

satisfying D1–D5 for which the probability of survival on the optimal path is zero

given exponential technology growth (and indeed given any A(·) that is eventually

bounded above zero).
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A.3.4 Acceleration and state risk generalized

For any admissible hazard function, the lessons of Section 3.4 are essentially main-

tained. The e↵ect of a temporary level e↵ect on the probability of survival is ambigu-

ous. However, if the probability of survival is positive on the planner-optimal policy

path, given the baseline technology path, then an acceleration to technological devel-

opment increases the probability of survival. If the probability of survival is zero on

the planner-optimal policy path, then an acceleration to technological development

may increase the probability of survival or have no e↵ect.

Proposition 8. Acceleration and state risk generalized

Choose an admissible technology path A(·) and hazard function �(·).

Given A, ˙̃
A with ˙̃

A > ȦA,

a) �
A,

˙̃
A
= �A(

˙̃
A

�1 � Ȧ
�1
A
) < 0.

Given an acceleration Ã(·) from A to A,

b) If X < 1, then X̃  X +
R

A

A
�

A,
˙̃
AA

dA < X.

c) If X = 1 and the acceleration is temporary, then X̃ = 1.

If X = 1 and the acceleration is permanent, then X̃ may be finite or infinite.

Proof. See Appendix B.7.

The intuition is the same as illustrated in Section 3.4. Acceleration in e↵ect hori-

zontally rescales all or part of the hazard curve by leaving less time spent at each

state. It may also induce more stringent policy at each state, in which case the weak

inequality of part (b) is strict.

A.3.5 Discussion

Accelerations vs. level e↵ects — Given a technology path A(·) satisfying A1 and A4,

say that a di↵erentiable technology path Ã(·) is a level effect to A(·) (at time 0) if

9m > 1 : Ãt = mAt 8t.
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When technology growth is exponential, level e↵ects are (sharp) temporary accelera-

tions. Otherwise, they may be distinct.

Unlike temporary accelerations, level e↵ects do not always decrease cumulative

risk outside the exponential growth context. Consider for example hazard function

(5) with a technology path A(·) that is nearly stagnant for an arbitrarily long period,

say for t  99; that grows exponentially at t > 99; and for which the implied regime-

change time is t⇤ = 100. A level e↵ect—a jump in the technology level at t = 0—then

raises the technology level during the arbitrarily long period of stagnation, which

non-negligibly raises cumulative risk, while lowering cumulative risk only negligibly

by cutting a vertical slice from the hazard curve following t = 99.

The direction of technical change — This is a model in which there is a single di-

mension to technological development. Inventions simply occur in sequence, each of

which increases potential consumption and has some e↵ect on the hazard rate at any

given level of consumption. In practice, however, technological development is surely

at least somewhat directed : tradeo↵s between consumption and risk in later periods

are a↵ected by the extent to which policymakers and firms in earlier periods have

developed various types of technology. Consider for example the “richer model” of

Jones (2016), in which increases in the value of life relative to consumption motivate

increases not only in health spending but also in medical R&D.

In positing a baseline sequence of maximum potential consumption levels {At}

and a hazard function �(A, ·), we are simply describing a path of possibilities frontiers

over time, not embedding any assumptions about how this path is generated. In

particular, we are not assuming that there is only one way it is possible for technology

to unfold. If we posit a wider space of possible production technologies than the

sequence adopted on the baseline path, we must simply clarify that our results only

pertain to “accelerations” in the sense of increases to the rate of motion along the

baseline path. Subsidizing the development of risky technologies that would not
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otherwise have been invented, or choosing a technology path on which they are

invented sooner than they would have been but risk-decreasing technologies are not,

does not necessarily lower cumulative risk.19

In the next section (Appendix A.4), the lessons of this generalized model are used to

explore two particular hazard functions that may be of interest. The first illustrates

that, early in time, the hazard rate may increase alongside smooth declines in x. The

second is “microfounded” by an assumption that increases in safety expenditure lower

risk through redundant safeguards.

A.4 State risk with mitigation: Two more hazard functions

of interest

We will assume that technology grows at a constant rate g > 0.

A.4.1 A lower Inada condition on safety

As shown in Section 3.3, given a constant elasticity hazard function, � rises as long as

it remains optimal to maximize consumption, and falls immediately once it becomes

19In addition to modeling the policy choice about how much consumption to sacrifice for an in-

stantaneous reduction to the hazard rate, an earlier version of this paper models the technology path

as directed by policy as well. The growth model is semi-endogenous, so total potential technology

growth is driven by exogenous population growth, but research is optimally allocated between risk-

increasing “consumption technology” and risk-decreasing “safety technology”. Conceptually, that

model sheds light on the same question as this one—how acceleration a↵ects cumulative risk, given

an endogenous policy response—but the objects of study are accelerations to population rather than

to technology itself. Numerical estimation suggests that acceleration weakly decreases cumulative

risk in that context as well, for the same reasons as it does here. When population growth is acceler-

ated, and labor is allocated optimally across fields, civilization traverses roughly the same technology

path but more quickly. When future population growth is anticipated to be faster, the value of the

future is higher (due to faster future technological development even if larger populations are not

valued more intrinsically), so optimal policy shifts the technology path in a safer direction.

https://globalprioritiesinstitute.org/wp-content/uploads/Leopold-Aschenbrenner_Existential-risk-and-growth_.pdf
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optimal to begin choosing sub-maximal consumption out of concern for safety. This

result is arguably at odds with the experience of the last century, during which the

hazard rate has arguably risen while existential safety expenditures have risen (from

essentially 0). We will therefore here explore how to tweak the hazard function so

that the Kuznets curve is smoothed, and the policy choice variable falls even early in

time while the hazard rate is still rising.

A constant elasticity hazard function generates a distinct pair of regimes for

the same reason here as in Stokey (1998): because, when x = 1, marginal “safety

expenditures”—decreases to x—produce only finite marginal benefits. That is, there

is no “lower Inada condition on safety”. We will say that a hazard function exhibits a

lower Inada condition on safety if limx!1
@�

@x
= 1. Under this condition, it is optimal

to set xt < 1 as long as vt > 0: as long as civilization is worth preserving at all, some

expenditures on existential risk reduction are worthwhile.

Not every hazard function with a lower Inada condition on safety behaves like a

smoothed version of a constant elasticity hazard function. If the inverse of the hazard

function is too concave around x = 1 (when A is low), then x may fall rapidly, rather

than mildly, from the outset, yielding no early period during which x ⇡ 1. If it is not

concave enough around x = 1, on the other hand, then early decreases to x produce

significant decreases to �, so that the hazard rate falls even early in time.

One class of hazard functions with the desired features is

�t = �̄A
↵

t
x
�

t

1� (1� xt)✏

xt

, ✏ 2
�1
2
, 1
�
, (44)

where the conditions on parameters other than ✏ are as in (5). The distinction between

the hazard functions is illustrated below for the case of �̄A↵ = 1, ✏ = 0.6, � = 2. The

solid curve represents the old hazard function; the dashed curve represents the new

hazard function, vertical at x = 1.
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0 1

1

x

�

Note that

lim
x!0

1� (1� xt)✏

xt

= ✏,

so the asymptotics in this case are identical to those in the case of a constant elas-

ticity hazard function (except that the hazard rate is multiplied by ✏). However, the

transition dynamics are di↵erent. Though it is now optimal to set x < 1 as long as

v > 0, x now falls smoothly and � smoothly rises and falls. The paths of risk and

policy are illustrated below for ✏ = 0.6, A0 = 2.03, and otherwise the same parameter

values as in Table 1.20

20A0 is raised slightly in order to maintain that the value of a statistical life-year “today” (at

t = 75) is four times per capita consumption, and the hazard rate is approximately 0.1%, despite

the fact that, in this model, consumption and the hazard rate are slightly less than maximal even

early in time.
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Figure 3: Evolution of the policy choice and the hazard rate along the optimal path

given a lower Inada condition on safety expenditure

Derivations and code for replicating the simulation may be found in Appendix C.

A.4.2 Safety in redundancy

The constant elasticity hazard function of Sections 3.2–3.4, and its tweak just above,

were chosen for clarity. We might however be interested in a better-founded story

about the shape of the hazard function, in which the hazard rate is determined by the

production of consumption goods and safety goods. For illustration, one relatively

straightforward story would be as follows.

• Each unit of consumption (still produced as Ct = Atxt) poses some risk p of

catastrophe per period in the absence of any safety measures.

• For each unit of the consumption good, if one unit of the safety good (produced

as Ht = At(1 � xt)) is allocated to preventing the production process from
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causing a catastrophe, this fails to prevent a catastrophe with probability b̃ < 1.

That is, one unit of H per unit of C multiplies the risk posed by each unit of

C by b̃, from the baseline of p.

• The probability that the production of a given unit of consumption results in

a catastrophe is the probability that (a) there would have been a catastrophe

in the absence of any safety measures and (b) all H/C safety measures fail

independently: pb̃H/C .

• The probability that the world survives a given period is the probability that

all C units of consumption, independently, do not generate a catastrophe: (1�

pb̃
H/C)C .

In discrete time, the story above would correspond to the hazard function

�(At, xt) = 1�
�
1� pb̃

1�xt
xt

�Atxt
, b̃ 2 (0, 1). (45)

The continuous-time analog to (45) is

�(At, xt) = Atxte
�b

1�xt
xt , b > 0 (46)

(see Appendix B.8.1).

Since hazard function (46) lacks any sort of lower Inada condition on 1� x, x is

fixed at 1, and � rises, early in time while v > 0. After the relevant calculations,

Propositions 5–7 tell us that (46) yields a Kuznets curve, with � eventually falling

quickly enough to permit survival.

Proposition 9. Long-run policy and risk given safety in redundancy

Given hazard function (46), the optimal path features

lim
t!1

xtt =
b

g�
, (47)

lim
t!1

g�t = �g(� � 1). (48)

Proof. See Appendix B.8.2.
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Thus the decline in policy choice here is slower than in the constant elasticity case:

x declines proportionally to 1/t, not exponentially. This is because a redundancy-

based model yields a hazard rate that falls rapidly in the policy choice variable: unit

decreases in Atxt, rather than merely proportional increases, generate proportional

decreases to �. In both cases, however, xt ! 0. And in both cases, �t declines

exponentially, and so quickly enough to permit survival.

Comparing (48) to the limiting expression for g� from Proposition 1, we see that,

in the limit, the hazard rate declines more quickly in the redundancy-based model

than in the original model. This follows from the fact that the extra coe�cient on

g(� � 1) in the limiting expression for g� from Proposition 1 is less than one:

↵ > 0, � > 1 =) � � ↵

� + � � 1
< 1.

Intuitively it is because, in a redundancy-based model, smaller consumption sacrifices

(linear rather than proportional) are needed for proportional decreases to the hazard

rate. The planner’s response to this expanded possibilities frontier comes partially

in the form of slower increases in foregone consumption, as described by (47), and

partially in the form of faster declines in the hazard rate, as described by (48).

A.5 Transition risk: Optimal technology growth

A.5.1 Without mitigation, optimality of stagnation given ⇣ = 1

Suppose first that ⇣ = 1 and ↵ = �1, so that

�t = �̄
Ȧt

At

.

As noted in the body text, this model is precisely the Russian roulette model of Jones

(2016), with �̄ representing the variable there denoted ⇡.

Jones finds in his setting that, with � > 1, it is optimal for technology to grow

only to a finite level Â. In our notation, this is because stagnation at some Â, with

no risk, yields constant flow utility of u(Â) and a constant value of the future of
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v(Â) ⌘ u(Â)/⇢. It is thus optimal to halt growth at the technology level at which the

future benefits of stagnating at a slightly higher A equal the costs via temporarily

inducing a positive hazard rate:

v
0(Â) =

@�

@Ȧ
· v(Â)

=) u
0(Â)

⇢
=

�̄

Â

u(Â)

⇢
(49)

=) Â =
⇣
�̄ + � � 1

�̄

⌘ 1
��1

. (50)

When ↵ = �1, we can derive an analytic solution for the optimal technology level

(50) at which to stagnate. Though this is not possible for other values of ↵, it is easy

to verify that, for any ↵ � ��, this result does not qualitatively change. Equality

(49) is then modified to

u
0(Â)

⇢
= �̄Â

↵
u(Â)

⇢

=) Â
�(↵+�) = �̄u(Â). (51)

Given ↵+ � > 0, the left-hand side falls strictly monotonically from 1 to 0 as Â rises

from 1 to 1. The right-hand side rises strictly monotonically from 0 to �̄/(��1) > 0

as Â rises from 1 to 1. There is thus a unique Â > 1 at which (51) is satisfied: that

is, at which technology growth is preferred to stagnation i↵ A < Â.

A.5.2 Without mitigation, no optimal stagnation given ⇣ 6= 1

If we further generalize from ⇣ = 1 to arbitrary ⇣, however, we find that the result

that stagnation is optimal when ⇣ = 1 is knife-edge.

Let vt(A(·)) denote the value of the future at t � 0 given technology path A(·). As

baseline, choose a technology path A(·) satisfying A1 and A2.

If ⇣ < 1, then at every t, and for every technology level A > At, there is a

di↵erentiable and weakly increasing technology path Ã(·) with Ãs = As for all s  t,

Ãt = A for some t > t, and vt(Ã(·)) > vt(A(·)).
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To construct such a path, choose t and A > At. Observe that, if ˙̃
AA equals a

constant value ˙̃
A for A 2 (At, A), the cumulative risk endured on path Ã(·) from At

to A equals

Z
A

At

�̄A
↵ ˙̃
A

⇣�1
dA,

which ! 0 as ˙̃
A ! 1. With ⇣ < 1, therefore, su�ciently rapid growth from At to A

approximates an immediate, risk-free jump from At to A, as in the state risk “⇣ = 0”

case.

Now let

t ⌘ min{t : Ãt = A} =
A� At

˙̃
A

,

t ⌘ sup{t : At < A},

noting that t may be infinite, and choose A and ˙̃
A so that ˙̃

A > Ȧs for all s 2 [t, t).

This is possible for some su�ciently high ˙̃
A by the right-continuous di↵erentiability

of A(·), and ensures that Ãs > As throughout this interval. Suppose that Ãt = A

for t 2 [t, t] and Ãt = At for t > t—i.e. that the new path halts growth at A until

the old path has caught up, if ever, after which the paths are identical. Then Ã(·)

o↵ers strictly higher consumption than A(·) across (t, t) in exchange for arbitrary little

up-front risk and no subsequent increases in the hazard rate.

Incidentally, this framework makes clear that, in the absence of any costs to

technological development besides transitional existential risk, with ⇣ < 1 there

is no optimal continuous technology path. An immediate jump in the technology

level is always desirable, and a larger jump is always preferable to a smaller one.

Furthermore, if one introduces R&D costs to the model, an optimal path will exist

only if the costs are su�ciently convex in the speed of technological development.

Otherwise, attempts to identify an optimal technology path will encounter the

“chattering” problem: rapid alternations between slow and fast growth will be
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preferred to continuous growth, because they can achieve a given quantity of techno-

logical progress over a given interval of time while contributing less to cumulative risk.

Stagnation is not optimal given ⇣ < 1 because, due to the “upper Inada condition” on

� / Ȧ
⇣ with ⇣ < 1, su�ciently fast technological development carries arbitrarily little

risk per unit of new technology. Stagnation is not optimal given ⇣ > 1 because, since

lim
Ȧ!0

@�

@Ȧ
= 0 when � / Ȧ

⇣ with ⇣ > 1, su�ciently slow technological development

carries arbitrarily little risk per unit of new technology.

To see this, consider the optimal technology growth rate at t given a technology

path A(·) with At = Â > 1 and Ȧs = 0 for s > t. Unlike in the ⇣ < 1 case, there is

an optimal technology growth rate to adopt at t: the rate Ȧ
⇤ that sets the marginal

expected utility benefit (via increased future consumption) of marginally increasing

Ȧ, per unit time that Ȧ is increased, equal to the marginal expected utility cost per

unit time (via an increased hazard rate at t):

v
0(Â) = �̄Â

↵
⇣Ȧ

⇤⇣�1
v(Â)

=) Ȧ
⇤ =

 
� � 1

�̄
· Â

�(↵+�)

1� Â1��

! 1
⇣�1

> 0.

Likewise, given a technology path A(·) with limt!1 At = Â < 1, the optimal

technology growth rate must satisfy the equality above in the limit. Since A(·) cannot

approach a finite upper asymptote if Ȧ is bounded above zero, no such technology

path is optimal.

A.5.3 With mitigation, analogous results for ⇣-threshold 1 + �

��1

Throughout this section we will assume hazard function (29) with ⇣ > 0:

�t = �(At, Ȧt, xt) = �̄A
↵

t
Ȧ

⇣

tx
�

t �̄ > 0, ⇣ > 0, � > 1.

For simplicity we will also assume that the baseline technology path features stag-

nation at technology level Â. We will then consider the impact per unit time of an
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instantaneous marginal increase to the technology growth rate Ȧt.

We will see that, in the ⇣ < 1+ �

��1 case, as in the ⇣ < 1 case without mitigation,

there is no optimal growth rate: su�ciently fast growth is always preferable to stag-

nation. In the ⇣ > 1+ �

��1 case, as in the ⇣ > 1 case without mitigation, growth may

be “too fast”, but there is still no technology level at which it is optimal to stagnate.

However, the ⇣ = 1 + �

��1 case is not closely analogous to the ⇣ = 1 case without

mitigation. Instead, for low values of Â it resembles the ⇣ < 1 + �

��1 case, with no

optimal technology growth rate, and for high values of Â it resembles the ⇣ < 1+ �

��1

case, in which slow growth is preferable both to fast growth and to stagnation.

Intuitively, this is because ⇣ = 1 + �

��1 implies ⇣ > 1. Since slow growth without

mitigation is preferable to stagnation given ⇣ > 1, and since introducing the option

to mitigate risk with xt < 1 does not remove the option of slow growth without

mitigation, introducing the policy option cannot render stagnation optimal.

In this setting, there are two state variables: the probability of survival S and the

technology level A. There are two choice variables: policy xt and the technology

growth rate Ȧt.21 Given St = 1, the marginal net impacts on expected utility of a

marginal increase in Ȧt, per unit time, is given by the respective derivative of the

Hamiltonian expression

u(Â, xt)� vt�(Â, Ȧt, xt) + atȦt (52)

(adapted from Appendix B.1 below), where a is the costate variable on technology.

Under the xt  1 constraint, the optimal choice of xt given Ȧt is given by the first

order conditions @L/@xt = 0, @L/@µt � 0, µt@L/@µt = 0 on the Lagrangian

L = u(Â, xt)� vt�(Â, Ȧt, xt) + atȦt + µ(1� xt). (53)

21It would be equivalent, and more standard but in this case more complex, to define a new choice

variable �t such that the technology law of motion is Ȧt = �t.
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This reduces to

xt = min
⇣
1,
⇣
�̄�Â

↵+��1
Ȧ

⇣

t v(Â)
⌘� 1

�+��1
⌘
, (54)

with µt > 0 i↵ the second term of the above minimum—the unconstrained optimal

choice of xt—is greater than 1. (This is adapted from (62)–(63) below.)

To find the marginal net impact on expected utility of a marginal increase in

Ȧt per unit time, given that xt is set optimally in response, we can take the first

derivative of (53) with respect to Ȧt and evaluate it at xt = (54). Because (52) and

(53) are continuously di↵erentiable in Ȧt, xt, and µt, by the envelope theorem we

can di↵erentiate (53) with respect to Ȧt and then substitute xt = (54), rather than

accounting for the impact of changing Ȧt on the choice of xt by substituting (54) into

(52) and di↵erentiating the result with respect to Ȧt.

Finally, given technology level At = Â and permanent stagnation after t, the value

of the costate variables at t are straightforward. The value of [saving] civilization at

t is v(Â), and the value of a marginal increase in the technology level is the value of

an equal marginal increase in consumption at all future periods:

vt = v(Â) =
1

⇢
· Â

1�� � 1

1� �
,

at = v
0(Â) =

Â
��

⇢
.

The marginal net impact on expected utility of a marginal increase in Ȧt per unit

time is therefore

d(Ȧt) ⌘
Â

��

⇢
� v(Â)�̄Â↵

⇣Ȧ
⇣�1
t x

�

t (55)

=
Â

��

⇢
� v(Â)�̄Â↵

⇣Ȧ
⇣�1
t , Ȧt < Ȧt;

=
Â

��

⇢
� ⇣

⇣
�̄
1��

v(Â)1��
Â

(��↵)(��1)
�
�

⌘� 1
�+��1

Ȧ
⇣

��1
�+��1�1

t , Ȧt � Ȧt,

where

Ȧt ⌘
�
�̄�Â

↵+��1
v(Â)

�� 1
⇣
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is the maximum growth rate at which it is optimal to set xt = 1, and v(Â) is as

defined above.

If ⇣ < 1 + �

��1 , then the exponent on Ȧt in (55) is negative for Ȧt � Ȧt, so

lim
Ȧt!1

d(Ȧt) = Â
��
/⇢ > 0.

As in the ⇣ < 1 case without policy, this guarantees that su�ciently fast technology

growth is always preferable to stagnation.

If ⇣ > 1 + �

��1 , then the exponent on Ȧt in (55) is always positive. There is thus

a unique and positive value of Ȧt that sets d(Ȧt) = 0, and this is the optimal choice

of Ȧt. Su�ciently slow technology growth is always preferable to stagnation.

If ⇣ = 1+ �

��1 , then the exponent on Ȧt in (55) is positive for Ȧt < Ȧt and zero for

Ȧt � Ȧt. So if d(Ȧt) > 0, there is no optimal growth rate: from the At = Â margin,

it is desirable, albeit perhaps briefly, to have technology grow as quickly as possible.

If d(Ȧt) < 0, there is a unique value of Ȧt that sets d(Ȧt) = 0, it lies in (0, Ȧt), and

it is optimal.

Technically, if d(Ȧt) = 0, then any Ȧt � Ȧt is optimal at At = Â; but once At > Â,

we will have d(Ȧt) < 0, and a unique optimal growth rate which is positive but finite.

B Proofs

B.1 Existence and uniqueness of optimal policy

B.1.1 Necessary and su�cient conditions

The dynamic optimization problems analyzed in Sections 3–4 all feature one choice

variable x and one state variable S. Expected flow utility at t is Stu(At, xt) for a

twice continuously di↵erentiable function u(·), strictly concave in x, with a lower

Inada condition on x. The law of motion for S is given by �St�(At, Ȧt, xt) for a twice

continuously di↵erentiable function �(·). A and Ȧ are independent of x, so operate

simply as functions of t.
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Letting v denote the costate variable on S, the current value Lagrangian corre-

sponding to the problem is then

L(St, xt, vt, µt, t) = Stu(xt, t)� vtSt�(xt, t) + µt(1� xt) (56)

(abusing notation slightly by reusing u(·) and �(·) as functions of time), where µt

represents the the Lagrange multiplier on xt. We impose the xt  1 constraint but

not the xt � 0 constraint because the latter can never bind, by the lower Inada

condition on u(·).

(56) satisfies the Mangasarian concavity condition that L(·) is everywhere concave

in S and x. So, applying Caputo (2005), Theorems 14.3-4 and Lemma 14.1,22 given

continuous paths of x 2 [0, 1] and S 2 [0, 1] with S0 = 1 and Ṡt = �St�(xt, t), we

have that the x, S path is optimal if—and, given piecewise continuity of x and S, only

if—for some piecewise di↵erentiable path of v and some piecewise continuous path of

µ � 0, at all t the following first-order conditions are satisfied

@L
@xt

(St, xt, vt, µt, t) = 0, (57)

@L
@µt

(St, xt, vt, µt, t) � 0, (58)

µt

@L
@µt

(St, xt, vt, µt, t) = 0 (59)

as well as the transversality condition that

lim
t!1

e
�⇢t

vt = lim
t!1

e
�⇢t

vtSt = 0. (60)

Furthermore, given optimal paths of x and S and corresponding paths of v and µ, v

will satisfy

v̇t = ⇢vt �
@L
@St

= ⇢vt � u(xt, t)� vtṠt

= (⇢+ �(xt, t))vt � u(xt, t) (61)

22Caputo (2005) uses the more general present value notation. Because the control problem at

hand is exponentially discounted, we here use the simpler current value notation.
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except at any discontinuity points of x, at which v will have di↵erent right and left

derivatives.

B.1.2 Interpreting the transversality condition

Given a continuous v path, only the paths of x and µ defined by

xt =

8
><

>:

1, @u

@x
(1, t)� @�

@x
(1, t)vt � 0;

xt : @u

@x
(xt, t)� @�

@x
(xt, t)vt = 0, otherwise

(62)

µt =
@u

@xt

(xt, t)�
@�

@xt

(xt, t)vt (63)

satisfy (57)–(59) for all t. Any such x path is well-defined, by the continuous di↵er-

entiability of u(·) and �(·) in x and the fact that u(·) and �(·) strictly increase in x.

Any such x path is also right-continuous in time, by

• the twice continuous di↵erentiability of u(·) and �(·) (expressed as functions of

x, A, and perhaps, in the case of �(·), Ȧ);

• the right-continuous di↵erentiability of A(·) in time;

• the right-continuous di↵erentiability of Ȧ(·) assumed in conjunction with the

hazard functions considered in Section 4;

and the implicit function theorem. Any such µ path is then also right-continuous in

time by the composition of continuous functions. To show there exists an optimal

path, and that only one such path is piecewise continuous, it will now su�ce to show

that there is a unique v path for which (60)–(61) are satisfied given the corresponding

x path (62) and its implied S path, and that the corresponding x path is piecewise

continuous (in fact it is right-continuous).

The solution to di↵erential equation (61) is

vt = e

R t
0 (⇢+�s)ds

⇣
v0 �

Z
t

0

e
�

R s
0 (⇢+�q)dqu(xs, s)ds

⌘
(64)

=) v0 =

Z
t

0

e
�⇢s

Ssu(xs, s)ds+ e
�⇢t

Stvt. (65)
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Since (65) is continuous in t (by the boundedness of u(·) and the continuous evolution

of S) and holds for all t, v satisfies (60)–(61) i↵

v0 =

Z 1

0

e
�⇢t

Stu(xt, t)dt. (66)

That is, the value of decreasing the probability of a catastrophe at time 0 (as of time

0) must equal the expected utility of the future (as of time 0, given survival up to

time 0).

Given (62), vt determines xt for all t, and given (61), vt and xt determine v̇t for

all t. For a given v0, therefore, there is a unique path of v—and thus of x, and thus

of S—compatible with (61)–(62). We will now show that there is at least one value

of v0 for which (66) is satisfied, given the corresponding x and S paths. For such a

v0, the corresponding variable paths will by construction satisfy (57)–(60), and thus

constitute an optimum.

B.1.3 Existence

Let v(v0) and x(v0) denote the unique paths of v and x compatible with (61)–(62) for

which v0(v0) = v0. By (64), limv0!�1 vt(v0) = �1 for all t � 0. By (62), therefore,

for every t � 0, there is a ṽ0 such that xt(v0) = 1 for all v0 < ṽ0. Let s � 0 denote a

time at which As � 1, and choose ṽ0 low enough that ṽs < 0 and thus xs(ṽ0) = 1. By

(61), because u(1, s) � 0, ˙̃vt < 0. We thus have ṽt < 0, and thus xt = 1, for all t � s.

Now observe that if v0 < ṽ0, vt(v0) < vt(ṽ0) for all t. Otherwise, by the continuity

of v with respect to time, there would be a t with vt(v0) = vt(ṽ0), and integrating

(61), with (62) substituted for xt, would allow us to identify v0 = ṽ0. Thus, if v0 < ṽ0,

xt(v0) � xt(ṽ0) for all t � 0. It follows that, for some su�ciently low v0, the right-

hand side of (66) exceeds the left-hand side.

For every optimization problem under consideration, there is some U by which

feasible values of the right-hand side of (66) are upper-bounded. So, for v0 > U , the

left-hand side of (66) exceeds the right-hand side.
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By (62), the implicit function theorem gives us that xt is continuous (indeed,

continuously di↵erentiable except at one point) in vt for all t. (61) then implies that

v̇t is continuous in vt for all t, and thus that vt(v0), then xt(v0), and then ultimately

the right-hand side of (66) are is continuous in v0 for all t. It follows from the

intermediate value theorem that there exists a v0 2 (v0, v0) for which (66) holds.

B.1.4 Uniqueness

The uniqueness result of Caputo (2005), Theorem 14.4 (cited above) does not imme-

diately apply here, because the Lagrangian is linear, not strictly concave, in the state

variable S. Fortunately, this can easily be remedied by defining the state variable to

be e.g. S2 without a↵ecting any conditions necessary for the other results.

Uniqueness (among piecewise continuous x paths) also follows immediately from

the observations that a path is optimal i↵ v0 attains its maximum feasible value and

that, given (57)–(60), v0 determines a unique path for every variable.

B.2 Long-run gv and proof of Proposition 2

B.2.1 Long-run constancy of gv for all �

From (61), because v is the costate variable on S, it must follow the law of motion

v̇t = (⇢+ �t)vt � u(Ct)

=) gvt = ⇢+ �(At, xt)�
u(Atxt)

vt
. (67)

Let

�̃ ⌘ � + � � 1.

From (15), once xt is interior we have

xt = A
�↵+��1

�̃

t

�
�̄�vt

�� 1
�̃ . (68)
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Substituting (68) into (67) yields

gvt = gv(vt, t) ⌘

8
><

>:

⇢+KA

(��↵)(1��)

�̃

t v
��

�̃

t + 1
1��

v
�1
t , � 6= 1;

⇢+ log
�
A

���↵
�

t

�
�̄�vt

�� 1
�
�
v
�1
t , � = 1,

(69)

where

K ⌘ �̄
� 1��

�̃
�
�
��

�̃ � 1

1� �
�
� 1��

�̃
�
.

If � > 1, recalling that vt monotonically increases and that At ! 1, the central term

of (69) vanishes. Also, in this case, v is upper-bounded, so it approaches an upper

bound v
⇤ by the monotone convergence theorem. So limt!1 gvt is defined, with

lim
t!1

gvt = ⇢+
1

v⇤(1� �)
. (70)

This limit cannot be positive, because v is upper-bounded, and it cannot be negative,

because v increases with time. So limt!1 gvt = 0, and v
⇤ = 1

⇢(��1) .

If � < 1, then K < 0, and the central term of (69) grows in magnitude without

bound, fixing v. v must therefore also grow without bound, or else gvt is eventually

negative.

Now observe that

˙gvt = KA

(��↵)(1��)

�̃

t v
��

�̃

t

⇣(� � ↵)(1� �)

�̃
g � �

�̃
gvt

⌘
� 1/vt

1� �
gvt

=
⇣
gvt � ⇢� 1/vt

1� �

⌘⇣(� � ↵)(1� �)

�̃
g � �

�̃
gvt

⌘
� 1/vt

1� �
gvt

= ��

�̃
g
2
vt
+
⇣(� � ↵)(1� �)

�̃
g +

�

�̃
⇢+

1

�̃vt

⌘
gvt �

⇣
⇢+

1/vt
1� �

⌘(� � ↵)(1� �)

�̃
g.

This di↵erential equation has two steady states, both positive. Since 1/vt ! 0, the

quadratic formula tells us that these steady states approach ⇢ and g(��↵)(1��)/�,

with the former attractive and the latter repulsive. By (22), ⇢ is higher, and is ruled
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out as a steady state by the transversality condition (60). Then because the limits

lim
t!1

ġv(gv, t) > 0 8gv 2
⇣(� � ↵)(1� �)

�
g, ⇢

⌘
,

lim
t!1

ġv(gv, t) < 0 8gv <
(� � ↵)(1� �)

�

are defined and continuous in gv, we must have

lim
t!1

gvt =
(� � ↵)(1� �)

�
g. (71)

Otherwise we would have gv ! �1, ruled out by the monotonicity of v, or gv ! ⇢,

ruled out above.

The � = 1 case is analogous to the � > 1 case. Di↵erentiating (69) with respect to

time yields ˙gvt strictly and continuously increasing in gvt from �1 at vt = 0 to ⇢

at vt = 1. There is thus a unique, positive, and repulsive “time-dependent steady

state” value of gv (i.e. gv for which ġv(gv, t) = 0) which declines to zero as t ! 1.

The limits

lim
t!1

ġv(gv, t) > 0 8gv > 0,

lim
t!1

ġv(gv, t) < 0 8gv < 0

are defined and continuous in gv, and we must have

lim
t!1

gvt = 0

to avoid gv ! �1 or gv ! 1.

B.2.2 Proof of Proposition 2

With the limiting behavior of gv pinned down, the asymptotic behavior of the other

variables follows straightforwardly. Substituting (71) for gvt into expression (16) for

gxt (and observing that the expression captures all �  1) produces

lim
t!1

gxt = �↵

�
g,
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and adding ↵g then produces the limit of gAx = gC :

lim
t!1

gCt =
� � ↵

�
g. (72)

For the hazard rate, rearrange (69) to get

vt =
u(Ct)

⇢+ �t � gvt
, (73)

and substitute (73) into (26) to get

�t =

8
><

>:

⇢+�t�gvt

�

1��

1�C
��1
t

, � < 1;

⇢+�t�gvt

� log(Ct)
, � = 1.

Solving for �t,

�t =

8
>><

>>:

(⇢�gvt)(1��)

�

�
1�C

��1
t

�
�1+�

, � < 1;

⇢�gvt

� log(Ct)�1 , � = 1.

In the � < 1 case, the limit of gv (71) and C ! 1 from (72) imply

lim
t!1

�t =
(⇢� (� � ↵)(1� �)g/�)(1� �)

� + � � 1
.

In the � = 1 case, substitute 0 for gvt and observe that, by (72),

lim
t!1

Ct

e
��↵
� gt

= C

for some C > 0, so that

lim
t!1

�tt = lim
t!1

⇢� gvt

�
�
log(Ct/e

��↵
� gt) + log(e

��↵
� gt)

�
/t� 1/t

= lim
t!1

⇢

� log(C)/t+ (� � ↵)g � 1/t

=
⇢

(� � ↵)g
.

B.3 Proof of Proposition 4

The proof is similar to the proof of Proposition 8a (Appendix B.7.1), which generalizes

Proposition 3. As there, vA+✏ is continuous in ✏ and ṽA+✏[✏] = vA+✏ for all ✏. In
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this setting, however, we cannot assume that ṽA[✏] weakly increases in A or that

ṽA[✏] � vA for all ✏. We will therefore use a di↵erent strategy to uniformly bound

ṽA[✏], for A 2 [A,A + ✏], in an interval whose maximum and minimum converge to

vA as ✏ ! 0.

Let t denote the time at which At = A. An acceleration Ã(·), featuring technology

growth rate ˙̃
A > ȦA until technology level A+ ✏, features technology growth at rate

˙̃
A across times

(t, t+ ✏/
˙̃
A).

More generally, the acceleration path reaches technology level A 2 [A,A+ ✏] at time

t̃(A) ⌘ t+ (A� A)/ ˙̃
A.

ṽA[✏] is the maximum value of survival ṽt̃(A), across feasible policy paths, achievable

at t̃(A) given technology path Ã(·)[✏]. It can thus be lower-bounded by one such

achievable value of survival, such as that achieved given xt = 1 for t 2 [t̃(A), t+ ✏/
˙̃
A).

Since Ãt > 1 throughout this interval, this lower bound is in turn strictly greater than

the value of survival at t̃(A) given no flow utility enjoyed throughout the interval.

Remembering that ṽA+✏[✏] = vA+✏ > 0 for any ✏, we thus have

ṽA[✏] �
Z

t+✏/
˙̃
A

t̃(A)

e
�⇢(t�t̃(A))

e
�

R t
t̃(A) �̄Ã

↵
s

˙̃
A

⇣
ds
u(Ãt)dt

+ e
�⇢(t+✏/

˙̃
A�t̃(A))

e
�

R t+✏/ ˙̃A

t̃(A)
�̄Ã

↵
s

˙̃
A

⇣
ds
vA+✏

> v
A
[✏] ⌘ e

�⇢(t+✏/
˙̃
A�t̃(A))

e
�

R t+✏/ ˙̃A

t̃(A)
�̄Ã

↵
s

˙̃
A

⇣
ds
vA+✏. (74)

Because t̃(A) increases in A, v
A
[✏] increases in A, so v

A
[✏] � v

A
[✏] for all A 2 [A,A+✏].

ṽA[✏] can be upper-bounded by the (infeasible) value of survival achieved at t̃(A)

given that, at t 2 [t̃(A), t + ✏/
˙̃
A), flow utility equals its supremum of 1/(� � 1) and
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the hazard rate equals 0:

ṽA[✏] <
1

� � 1

Z
t+✏/

˙̃
A

t̃(A)

e
�⇢(t�t̃(A))

dt+ e
�⇢(t+✏/

˙̃
A�t̃(A))

vA+✏

< vA[✏] ⌘
1

� � 1

Z
t+✏/

˙̃
A

t̃(A)

e
�⇢(t�t̃(A))

dt+ vA+✏. (75)

Because t̃(A) increases in A, v
A
[✏] decreases in A, so v

A
[✏] � v

A+✏
[✏] for all A 2

[A,A+ ✏].

From (74), (75), the continuity of vA+✏ in ✏, and the fact that ṽA+✏[✏] = vA+✏ for

all ✏,

lim
✏!0

v
A
[✏] = lim

✏!0
vA+✏[✏] = vA.

The proof then proceeds along the lines of the proof of Proposition 8 after (96),

with

x̃A[✏] = min
⇣
1,
⇣
�̄�A

↵+��1 ˙̃
A

⇣
ṽA[✏]

⌘� 1
�+��1

⌘

in place of (97), ultimately yielding

�
A,

˙̃
A
= �(A, ˙̃

A, x̃A)
˙̃
A

�1 � �(A, ȦA, xA)Ȧ
�1
A
, (76)

where x̃A is given by (31), at A = A, with ˙̃
A in place of ȦA.

If A � A
⇤, (76) reduces to

�
�̄
1��

�
�
A

(��↵)(��1)
v
�

A

�� 1
�+��1

⇣
˙̃
A

⇣
��1

�+��1�1 � Ȧ
⇣

��1
�+��1�1

A

⌘
.

Since ˙̃
A > ȦA, this is negative if ⇣ < 1 + �

��1 , zero if ⇣ = 1 + �

��1 , and positive if

⇣ > 1 + �

��1 .

If A < A
⇤, so that xA = 1, and ˙̃

A is small enough to maintain x̃A = 1, then (76)

reduces to

�̄A
↵
� ˙̃
A

⇣�1 � Ȧ
⇣�1
A

�
.

Since ˙̃
A > ȦA, this is negative if ⇣ < 1, zero if ⇣ = 1, and positive if ⇣ > 1.
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B.4 Proof of Proposition 5

Suppose that R⇤  1, and, by contradiction, that we do not have C
⇤ = 1.

By the failure of C⇤ = 1, there is an increasing and unbounded sequence of times,

tn ! 1, such that Ctn  C 8n � 1.

Consider the sequence of consumption levels nC 8n � 1. Since nC ! 1, by

R
⇤  1 we have

lim
n!1

R(nC) = lim
n!1

lim
A!1

@�

@x

�
A,

nC

A

� (nC)�

A⇢(� � 1)
 1. (77)

By D5, @�

@x
(A, x) weakly increases in x for any A. So

R(Ctn)  R(nC)
⇣
Ctn

nC

⌘�
 R(nC)n�� 8n, (78)

where the first inequality follows from the fact that nC � Ctn for each n, and the

second follows from C � Ctn for each n. By (77), R(nC)n��
< 1 for su�ciently large

n, so by (78) and A4, there exists an n such that

@�

@x

�
Atn ,

Ctn

Atn

� C
�

tn

Atn⇢(� � 1)
< 1 8n > n.

Since vt cannot exceed
1

⇢(��1) ,

@�

@x

�
Atn ,

Ctn

Atn

�
vtn < AtnC

��

tn
8n > n.

This is compatible with optimality only if xtn = 1. But this is impossible for

su�ciently large n, since Ctn = Atnxtn  C and limn!1 Atn = 1.

Suppose that R
⇤
> 1 and, by contradiction, that C

⇤ = 1. Then there is some C

such that R(C) > 1:

lim
A!1

@�

@x

�
A,

C

A

� C
�

A⇢(� � 1)
> 1.

So there is an A such that

@�

@x

�
A,

C

A

� 1

⇢(� � 1)
> AC

�� (79)
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for all A � A. Furthermore, because the left-hand side weakly increases in C by D5

and the right-hand side strictly decreases in C, (79) holds for all A � A and C � C.

By A4, and the supposition that C⇤ = 1, there is a t such that

@�

@x

�
At,

Ct

At

� 1

⇢(� � 1)
> AtC

��

t 8t � t. (80)

Finally, optimality requires

A
1��

t x
��

t � @�

@xt

�
At, xt

�
vt 8t

=) (Atxt)
1��

/vt �
@�

@xt

�
At, xt

�
xt � �(At, xt),

with the final inequality holding because, by D5, @�

@x
x � �. Given C

⇤ = 1, since vt is

upper-bounded, it follows that �t ! 0. With �t ! 0 and Ct ! 1, vt approaches its

upper bound of 1
⇢(��1) .

It therefore follows from (80) that, for su�ciently large t,

@�

@x

�
At,

Ct

At

�
vt > AtC

��

t .

This is incompatible with optimality. Thus, if R⇤
> 1, it is impossible that C⇤ = 1.

B.5 Proof of Proposition 6a

B.5.1 Preliminaries

It is optimal to set xt = 1 as long as, at x = 1, the marginal flow disutility of

decreasing x weakly exceeds the marginal expected utility of doing so via decreasing

the hazard rate:

A
1��

t � @�

@x
(At, 1) vt. (81)

It is optimal to set xt < 1 as long as (81) fails, maintaining

A
1��

t x
��

t =
@�

@x
(At, xt) vt (82)

=) xt = A

1��
�

t

⇣
@�

@x
(At, xt) vt

⌘� 1
�
. (83)

The uniqueness of the optimal path is shown in Appendix B.1.
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B.5.2 Proof that limt!�1 xt = 1

We will show that there exists a time t such that vt  0. It then follows immediately

that xt = 1 for t  t.

Let

T ⌘ A
�1
�
(� � 1)

1
1��
�

denote the time at which AT = (� � 1)
1

1�� , and at which therefore u(AT ) = �1. If

vT  0, the result follows immediately. Let us therefore assume that vT > 0.

For t < T ,

vt =

Z 1

t

e
�⇢(s�t)�

R s
t �qdqu(Cs)ds

=

Z
T

t

e
�⇢(s�t)�

R s
t �qdqu(Cs)ds + e

�⇢(T�t)�
R T
t �qdqvT . (84)

Since u(Cs)  u(As)  �1 for s  T , the first term of (84) is negative—indeed,

an integral over s of values which are negative for all s. The integral is shrunk

in magnitude when, for all s, u(Cs) is replaced with �1 and the discount factor

e
�⇢(s�t)�

R s
t �qdq replaced with its minimum value across the range, namely the discount

factor at T . So

vt < (t� T + vT )e
�⇢(T�t)�

R T
t �qdq

=) vT�vT < 0.

This proof admittedly “takes the model too literally”, in assuming that technology

growth has always been exponential and that therefore life was not worth living

before some point in the past. Still, the dynamic it bluntly illustrates should not

be controversial. When � > 1, proportional sacrifices in consumption—decreases to

x—carry greater utility costs the lower the baseline consumption level is. Early in

time, the discounted value of civilization v and the baseline consumption level A were

both low, so large sacrifices for safety would not have been optimal.
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B.5.3 Proof that limt!1 xt = 0 if ⌘A is bounded above 1� �

Generalizing (83), whether or not the xt  1 constraint binds we have

xt  A

1��
�

t

⇣
@�

@x
(At, xt) vt

⌘� 1
�
. (85)

We will show that if ⌘A(·) is bounded above 1� �, the right-hand side has an upper

bound which falls to 0 as (by A4) At ! 1.

Because by D1 � is positive, by D2 and D5 we have @�

@x
(At, xt) � �(At, xt). The

right-hand side is thus bounded above by

A

1��
�

t

�
�(At, xt)vt

�� 1
� . (86)

Fixing x and v, the elasticity of this upper bound with respect to A is (1 � � �

⌘A(A, x))/�. Since this is here bounded below 0, (86) tends to 0 as A ! 1. Finally,

vt is positive for all t � 0, because by A1 and A2 At > 1 for all t � 0 (rendering

vt > 0 feasible with x = 1 permanently), and vt does not fall because su�cient

precautions on new technology—e.g. banning its use—allow the consumption path to

be maintained without increasing risk, by D4. Therefore, if ⌘A(·) is bounded above

1� �, maintaining optimality condition (85) as At ! 1 requires xt ! 0.

B.6 Proof of Proposition 7

If limk#1 R̃(k) < 1, there is a k > 1 such that

lim
t!1

@�

@x

⇣
At,

t
k

��1

At

⌘
t

k�
��1

At⇢(� � 1)
< 1. (87)

Choose k 2 (1, k). Suppose that @t : Ct > t
k

��1 8t > t. Then there is an increasing

and unbounded sequence of times, {tn} ! 1, such that

Ctn  t

k
��1
n 8n � 1. (88)
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Observe that

lim
n!1

@�

@x

⇣
Atn ,

t

k
��1
n

Atn

⌘
t

k�
��1
n

Atn⇢(� � 1)

 lim
t!1

@�

@x

⇣
At,

t
k

��1

At

⌘
t

k�
��1

At⇢(� � 1)
· t�

k�k
��1� = 0, (89)

where the inequality follows from the fact that, by D5, @�

@x
(A, x) weakly increases in

x, and the limit before the t
� k�k

��1� term is less than 1 by (87).

By (88), (89), and the fact that vt <
1

⇢(��1) for all t, there is an n such that, for

all n � n,

@�

@x

⇣
Atn ,

Ctn

Atn

⌘
vtn < AtnC

��

tn
.

This is compatible with optimality only if xtn = Atnxtn = 1. But this is impossible

for su�ciently large n, by (41) and (88).

So for some k > 1,

9t : Ct > t
k

��1 8t > t. (90)

So (90) holds for k = 1 as well.

Given (90) for some k > 1, we have, for some t and some k 2 (1, k), that for all t > t

(Atxt)
1��

< t
�k

=) @�

@x
(At, xt)xt vt < t

�k

=) �tvt < t
�k

=) �t < t
�k
. (91)

The first implication follows from the fact that A
1��

t x
��

t � @�

@x
(At, xt)vt whether or

not x is interior. The second follows from the fact that � <
@�

@x
x by D1 and D5. The

third follows from the fact that vt is eventually positive and does not fall to zero.
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�t is uniformly bounded from 0 to t by maxA2[A0,At] �(A, 1), which exists and

is finite by the continuity of �(·) (D3). It follows from this and from (91) that S1 > 0.

If limk"1 R̃(k) > 1, there is a k < 1 and an s such that

@�

@x

⇣
At,

t
k

��1

At

⌘
t

k�
��1

At⇢(� � 1)
> 1 8t > s. (92)

Suppose by contradiction that @t : Ct < t
1

��1 8t > t. Then there is an increasing

and unbounded sequence of times, {tn} ! 1, such that

Ctn � t

1
��1
n 8n � 1. (93)

Observe that

lim
n!1

@�

@x

⇣
Atn ,

t

1
��1
n

Atn

⌘
t

�
��1
n

Atn⇢(� � 1)

� lim
t!1

@�

@x

⇣
At,

t
k

��1

At

⌘
t

k�
��1

At⇢(� � 1)
· t

1�k
��1� = 1, (94)

where the inequality follows from the fact that, by D5, @�

@x
(A, x) weakly increases in

x, and the limit before the t
1�k
��1� term is greater than 1 by (92).

By (93), (94), and the fact that vt 6! 0, there is an n such that

@�

@x

⇣
Atn ,

Ctn

Atn

⌘
vtn > AtnC

��

tn
.

This is incompatible with optimality. So

9t : Ct < t
1

��1 8t > t. (95)

By (95) and (41), xt ! 0. So there exists a t � t such that, for all t > t, the choice

of x is interior

@�

@x
(At, xt)vt = A

1��

t x
��

t
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and so, by (95),

@�

@x
(At, xt)xt vt = C

1��

t > 1/t.

Since ⌘x ⌘ @�

@x

x

�
,

⌘x(At, xt)�(At, xt) vt > 1/t 8t � t.

Recall that an interior choice of xt implies that vt > 0, that v is upper-bounded by

1
⇢(��1) , and that �t > 0 by D1. So ⌘x > 0 8t � t. So if ⌘x is upper-bounded by ⌘x,

�(At, xt) >
⇢(� � 1)

⌘x
· 1
t

8t � t.

So S1 = 0.

B.7 Proof of Proposition 8

Choose an admissible technology path A(·) and hazard function �(·).

B.7.1 Proof of part a

Choose A, ˙̃
A with ˙̃

A > ȦA. Define x̃A[✏] as x̃A given acceleration Ã(·)[✏], etc.

vt is weakly increasing and continuous (indeed di↵erentiable; see Appendix B.1) in

t. Since At is continuous, increasing, and invertible in t, vA is continuous and weakly

increasing in A. vA+✏ is therefore continuous and weakly increasing in ✏.

From technology level A+ ✏ onward, the technology paths, and thus the paths of

both consumption and the hazard rate, are identical under A(·) and Ã(·). So for any

✏ (including 0), ṽA+✏[✏] = vA+✏. From this, the fact that ṽA[✏] is weakly increasing in

A, and the fact that ṽA[✏] � vA for all ✏, we have that for all ✏

ṽA[✏] 2 [ṽA, ṽA+✏] ✓ [vA, vA+✏] 8A 2 [A,A+ ✏]. (96)

Then by the continuity of vA+✏ in ✏, for any ✏1 there is an ✏ such that |vA+✏ � vA| <

✏1 8✏ < ✏.
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Adapting (62),

x̃A[✏] = min
⇣
1, x :

@�

@x
(A, x)A��1

x
� =

1

ṽA[✏]

⌘
. (97)

By (97) and A2, ṽA[✏] � vA > 0 for all ✏ � 0, A 2 [A,A + ✏]. By D3, the implicit

function theorem, and the continuity of min(·), x̃A[✏] is continuous in ṽA[✏]. So by

(96) and the sentence following it, for any ✏2 there is an ✏ such that, for all ✏ < ✏,
���x̃A[✏]�min

⇣
1, x :

@�

@x
(A, x)A��1

x
� =

1

vA

⌘��� < ✏2 8A 2 [A,A+ ✏].

Again by D3, the implicit function theorem, and the continuity of min(·), the

second term in the absolute value is continuous in A. So for any ✏3 there is an ✏ such

that, for all ✏ < ✏,
���x̃A[✏]�min

⇣
1, x :

@�

@x
(A, x)A��1

x
� =

1

vA

⌘���

=
��x̃A[✏]� xA

�� < ✏3 8A 2 [A,A+ ✏].

With this uniform convergence, since

X̃[✏]�X =

Z
A+✏

A

�
�
A, x̃A[✏]

� ˙̃
A

�1
dA�

Z
A+✏

A

�(A, xA)Ȧ
�1
A
dA,

since �(·) is continuous in both arguments, since xA is continuous in A, and since Ȧ�1
A

is right-continuous in time and thus (by the continuity and monotonicity of A(·)) in

A,

�
A,

˙̃
A
⌘ lim

✏!0

X̃[✏]�X

✏
= �(A, xA)

˙̃
A

�1 � �(A, xA)Ȧ
�1
A

= �A

� ˙̃
A

�1 � Ȧ
�1
A

�
.

This proves (a).

B.7.2 Proof of part b

Let Ã(·) be an acceleration to A(·) from A to A. By the definition of an acceleration

and the definition of cumulative risk,

X̃ = X +

Z
A

A

⇣
�
�
A, x̃A

� ˙̃
A

�1
A

� �(A, xA)Ȧ
�1
A

⌘
dA. (98)
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For all A 2 [A,A), we have ṽA � vA, and thus, by (97) (dropping the “[✏]” arguments)

and D5, x̃A  xA. D1, D2, and D5 imply that �(·) weakly increases in x, so �(A, x̃A) 

�(A, xA). So

�
�
A, x̃A

� ˙̃
A

�1
A

� �(A, xA)Ȧ
�1
A

 �
A,

˙̃
AA

8A 2 [A,A].

This proves (b).

B.7.3 Proof of part c

If A < 1, the integral of (98) finite. So given a technology path A(·) for which

X = 1 and an acceleration to A < 1, X̃ = 1. This proves the first part of (c).

To prove the second part of (c), it will su�ce to find a hazard function �(·) and

technology path A(·) for which X = 1 and a pair of accelerations Ã(·) to A = 1, for

one of which X̃ is finite and for the other of which X̃ is infinite. We have already

encountered both.

For a case of the former, consider the hazard function �(At, xt) = Atxt, discussed

following Proposition 7. As discussed there, cumulative risk given optimal policy is

then infinite for any technology path eventually bounded above zero.

For a case of the latter, consider hazard function (5)—�(At, xt) = �̄A
↵

t
x
�

t —with

baseline technology path At = (t� 1)k (t � 0) and acceleration Ãt = (t� 1)k̃ (t � 0),

where

k  � + � � 1

(↵� �)(� � 1)
< k̃.

To verify that this is an acceleration, At = (t � 1)k =) t = 1 + A

1
k
t , so Ȧt =

k(t � 1)k�1 =) ȦA = kA
k�1
k , which increases in k given A > 1 (which holds for

t > 0).

As shown in (28), here X = 1 and X̃ < 1.
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B.8 Safety in redundancy

B.8.1 From discrete to continuous

Suppose a unit of production carries a constant flow probability �̄ of triggering an

existential catastrophe, so that, in the absence of any safeguards, the probability that

it does not trigger a catastrophe after s units of time is e��̄s. To be consistent with

the discrete-time specification that the probability that it triggers a catastrophe after

1 unit of time equals p, we have 1� e
��̄ = p and thus �̄ = � log(1� p).

With 1�xt
xt

units of safeguards maintained around t, since each unit multiplies the

probability of a catastrophic failure per unit time by a factor b̃ 2 (0, 1), we have that

the probability that a catastrophe is avoided until t+ s equals e��̄b̃
1�x
x s.

The probability that Atxt equally-safeguarded units of production all avoid catas-

trophe until t+ s is thus

�
e
��̄b

1�xt
xt s
�Atxt = e

��̄b

1�xt
xt Atxt s. (99)

So the probability of a catastrophe by s given locally constant A, x equals 1-(99), and

the hazard rate—the probability of catastrophe per unit time—at time t precisely is

�t ⌘ lim
s!0

�
1� e

��̄b

1�xt
xt Atxt s

�
/s = �̄Atxtb̃

1�xt
xt .

Letting b ⌘ � log(b̃) > 0 yields

�t = �̄Atxte
�b

1�xt
xt .

B.8.2 Proof of Proposition 9

By Appendix B.1, there is a unique optimal path. By the reasoning following (10),

the optimal choice of x is 1 until the (unique) time at which

@u

@xt

(At, xt) =
@�

@xt

(At, xt) vt (100)

at xt = 1, after which the optimal choice of xt is interior and maintains equality (100).
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Di↵erentiating the utility function and hazard function (46), we have

A
1��

t x
��

t = �̄Ate
�b

1�xt
xt

⇣
1 +

b

xt

⌘
vt

=) 1

vt
= �̄A

�

t e
�b

1�xt
xt

⇣
x
�

t + bx
��1
t

⌘
. (101)

Because vt increases monotonically and is upper-bounded, it is asymptotically

positive and constant, by the monotone convergence theorem.

We must have Ct ! 1. If we do not, then there is a unbounded sequence of times

tn and a consumption level C such that

xtn  C/Atn 8n. (102)

Substituting (102) into (101), and recalling that Atn ! 1, this would imply that the

right-hand side of (101) tends to 0 across {tn}, and thus that it is not asymptotically

positive.

From (101),

1

vt
= �tC

��1
t (1 + b/xt).

Since C
��1
t ! 1, xt cannot be negative, and 1/vt 6! 1, it follows that �t ! 0.

Since Ct ! 1 and �t ! 0, vt ! v̄.

Divide both sides of (101) by �̄A
�

0 , and take the log and then the limit. With

 ⌘ log
⇣
A

��

0

1

⇢(� � 1)�̄

⌘
,

we have

lim
t!1

h
g�t� b

1� xt

xt

+ log
⇣
x
�

t + bx
��1
t

⌘i
= 

=) lim
t!1

xt

1� xt

t = lim
t!1

b

g� � /t+ log
�
x
�

t + bx
��1
t

�
/t
.

Other than g�, the terms in the denominator on the right-hand side must converge

to 0. This would be avoided only if there were an unbounded sequence of times tn
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across which xtn grew at least exponentially with time, which is impossible, or shrank

at least exponentially with time, which would send the right-hand side of (101) to

zero. So

lim
t!1

xt

1� xt

t =
b

g�

=) lim
t!1

xtt = lim
t!1

(1� xt)
b

g�
=

b

g�

=) lim
t!1

xt

g�

b
t = 1,

since xt ! 0. It then follows from the hazard function that, in the limit, � falls to 0

at exponential rate �g(� � 1) < 0.

C Transition dynamics for simulations

For simulating the transition dynamics, it is helpful to find ẋt and �̇t as functions of

t and xt in the regime where x is interior.

Hazard function (5), used throughout Sections 3.2–3.4 and used to simulate

Figures 1 and 2, is the special case of hazard function (44), used to simulate Figure

3, with ✏ = 1. The calculations below therefore apply to all simulations.

FOC:

@u

@xt

(At, xt) =
@�

@xt

(At, xt)vt

=) A
1��

t x
��

t = �̄A
↵

t
x
��2
t

⇣
(� � 1)

�
1� (1� xt)

✏
�
+ ✏xt(1� xt)

✏�1
⌘
vt.

Rearranging and di↵erentiating gives

vt =
1

�̄

A
1���↵

t x
2����

t

(� � 1)
�
1� (1� xt)✏

�
+ ✏xt(1� xt)✏�1

(103)

=) v̇t = vt

⇣
(1� � � ↵)g + (2� � � �)

ẋt

xt

(104)

� ✏
� � (✏+ � � 1)xt

(� � 1)(1� xt)1�✏ + 1� � + (✏+ � � 1)xt

ẋt

1� xt

⌘
.
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From the first-order condition with respect to the state variable St,

v̇t = vt(⇢+ �t)� u(ct)

= vt

⇣
⇢+ �̄A

↵

t
x
��1
t (1� (1� xt)

✏)
⌘
� (Atxt)1�� � 1

1� �
. (105)

Substituting (103) into (104) and (105), setting the results equal, and solving for ẋt

yields

ẋt = xt

�
(� � 1)(1� xt)

1�✏ + 1� � + (✏+ � � 1)xt

�
(1� xt)

⇣
(2� � � �)

�
(� � 1)(1� xt)

1�✏ + 1� �

+ (✏+ � � 1)xt

�
(1� xt)� ✏(� � (✏+ � � 1)xt)xt

⌘�1

⇣
⇢+ �̄A

↵

t
x
��1
t (1� (1� xt)

✏)� g(1� ↵� �)� (106)

(Atxt)1�� � 1

1� �
�̄A

↵+��1
t x

�+��2
t

�
(� � 1)(1� (1� xt)

✏) + ✏xt(1� xt)
✏�1
�⌘

.

Di↵erentiating the hazard function (44) with respect to t yields

�̇t = �̄A
↵

t
x
�

t

1� (1� xt)✏

xt

⇣
↵g + (� � 1)

ẋt

xt

+ ✏
(1� xt)✏

1� (1� xt)✏
ẋt

1� xt

⌘
. (107)

Scripts for replicating Figures 1, 2, and 3 using (106) and (107),

and the estimate of S1 following Figure 1, are provided here:

https://philiptrammell.com/static/ERAG code.zip.

https://philiptrammell.com/static/ERAG_code.zip
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