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Abstract

I explore the implications of time preference heterogeneity for the private fund-
ing of public goods. The assumption that players use a common discount
rate is knife-edge: relaxing it yields substantially different equilibria, for two
reasons. First, time preference heterogeneity motivates intertemporal polar-
ization, analogous to the polarization seen in a static public good game. In
the simplest settings, more patient players spend nothing early in time and
less patient players spending nothing later. Second, and consequently, time
preference heterogeneity gives less patient players a “first-mover advantage”.
Departures from the common-discounting assumption are economically signif-
icant: a patient player’s payoff in equilibrium, relative to that obtained when
he is constrained to act according to a higher discount rate, typically grows
unboundedly as his share of the initial budget falls to zero. Finally I discuss
applications of these results to the debate over legal disbursement minima.
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1 Introduction

1.1 Motivation

The modern literature on public good games begins with Bergstrom et al. (1986).
Bergstrom et al. observed that well-behaved static public good games, with each
player’s payoff concave in the total provision of each good, feature a unique equi-
librium provision of each good. In any equilibrium, each individual is indifferent to
marginal reallocations of resources among the goods she herself funds and weakly
prefers reallocations to goods she funds from goods she does not. Even individu-
als with relatively similar preferences thus typically find themselves “polarized”, in
the sense that they fund entirely or almost entirely non-overlapping sets of projects.
Similar observations have been made independently on other occasions, e.g. by Kalai
and Kalai (2001).

An extensive literature on dynamic public good games has developed as well. A
central concern of this literature is efficiency, and with minor variations, the con-
cern is typically explored in models with a single public good, a single private good,
and symmetric players. It has long been understood that in a simple continuous-
time model with (near-)perfect monitoring of the individual or aggregate contribu-
tion history—or, equivalently, in a discrete-time model with lagged monitoring but
(near-)fully patient players—(near-)fully efficient contribution schedules can typi-
cally obtain in subgame perfect equilibrium (McMillan, 1979; Benhabib and Radner,
1992; Battaglini et al., 2014). This is because the gains from deviation are infinites-
imal relative to the losses from future punishments. At the same time, dynamic
interaction can introduce channels that exacerbate crowding out relative to a static
setting, in letting players signal that they will contribute little in total by having
contributed little in the past (Fershtman and Nitzan, 1991; Admati and Perry, 1991).
Conversely, but by similar reasoning, if the public good exhibits increasing returns,
a dynamic interaction can allow players “crowd each other in” (Marx and Matthews,
2000). In all cases, the dynamic setting interacts with strategic polarization only in
the sense that it can affect how one player’s expenditures on the public good crowd
or fail to crowd others’ out.

Relatedly, despite its size, the literature on dynamic public good games near-
universally assumes that the actors under consideration act under a common discount
rate. This assumption is pervasive both in the purely theoretical literature, as cited
above, and in applications, such as to country-level efforts to mitigate climate change:
see e.g. Dutta (2017). Fishman (2019) explores bargaining over public good provision
in a dynamic setting where the players use different discount rates, and a small
literature building on Sorger (2006) likewise explores the implications of bargaining
under time preference heterogeneity in dynamic settings, some of which could apply
to public good provision problems. Finally, the only other paper on the theory of
public good games even to mention time preference heterogeneity, of which I am
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aware—and so the only paper to do so outside a bargaining context—is Jacobsen et
al. (2017), but it is set in a static environment. Lower time preference, i.e. greater
concern for the future, is simply listed as one reason why individuals may have
different preferences regarding the provision of an environmental good in the present.

This paper introduces time preference heterogeneity among public good
providers, and argues that a natural and important implication is “intertemporal
polarization”, or crowding out across time.

An analysis of dynamic public good provision under time preference heterogeneity
is valuable for at least two reasons.

First, individual rates of time preference vary widely.1 Most developed-world gov-
ernments publish discounting guidelines that make explicit the discount rates they
use in cost-benefit analysis for public policy, revealing unambiguously that they too
act under heterogeneous rates of time preference.2 Economists’ recommendations of
time preferences to use in social discounting differ substantially.3 Philanthropists’
time preferences appear to vary as well, both with each other and with those of indi-
viduals and policymakers.4 Of course, individuals, policymakers, and philanthropists
all regularly contribute to public goods to which other such parties also contribute,
and these parties must all decide how to allocate their contributions over time. In
doing so, they participate in dynamic public good games. Real-world dynamic public
good games therefore likely exhibit substantial time preference heterogeneity.5 Our
attempts to model these games, and improve public good provision processes in light
of them, will likely fail if we do not account for it.

Second, in practice, many individuals currently hold philanthropically-purposed

1A dated but helpful review of econometric and experimental literature on time preference
heterogeneity among individuals and households can be found in Alan and Browning (2010), pp.
1252–3.

2Compare US Office of Management and Budget (2019) and HM Treasury (2020), for instance.
This is especially relevant in the context of international contributions to global public goods,
because, in the absence of strong international governance, nations must effectively engage in public
good games.

3As surveyed by Drupp et al. (2018).
4Elsey and Moss (2024) survey philanthropists and small donors in the Effective Altruism com-

munity on their philanthropic preferences. Of 377 respondents who answered a question about time
preference, 44% report a zero rate of pure time preference and 10% report a rate of 5% per year or
more. This survey question was included at my request.

5Note in particular that philanthropy often involves providing consumption goods to others who
also to some extent provide for themselves. Time preference heterogeneity is almost intrinsic to
the interaction between these two providers. This is because beneficiaries typically face mortality
risks, and temptations to impatience, that we should not generally expect to appear—and which, to
some extent, empirically do not appear—in the utility function of a third-party provider. See Nesje
(2024) for a model grounding this difference between households’ and planners’ discount rates, and
Frietas-Groff and Makkar (2023) for an experimental approach on this question and review of the
relevant literature.
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assets in tax-exempt vehicles where they are earmarked for future charitable giving,
such as donor-advised funds (“DAFs”). Assets in DAFs in particular, in the United
States, currently total almost $150 billion; contributions to them have historically
grown at a substantially higher rate than charitable contributions as a whole; and
disbursements have not risen as quickly as contributions (National Philanthropic
Trust, 2020). As we will see, this pattern can straightforwardly be explained as
rational behavior by patient philanthropists given “over-spending” (from their per-
spective) by less patient other parties. Nevertheless, it is routinely criticized as an
unjustifiable withholding of charitable funds, or even as a form of tax evasion. These
criticisms recently reached new prominence in the United States with the June 2021
introduction of the Accelerating Charitable Efforts (“ACE”) Act by Senators An-
gus King and Charles Grassley, which would impose disbursement requirements on
DAFs, effectively requiring their contributors to act less patiently. Due to a lack
of literature on dynamic public good provision under time preference heterogene-
ity, the implications of such a requirement, and of similar proposals to introduce or
raise charitable disbursement minima in the United States and elsewhere, have not
undergone thorough economic scrutiny.

I consider a simple model in which there is a single public good, and each player’s
flow utility depends only on total flow spending on the good. Two players with
constant but different rates of time preference make decisions about how much to
contribute to the good, and how much to invest for future contribution, over an
infinite horizon in continuous time.

To isolate the implications of time preference heterogeneity, I assume that the
present value of each player’s total contribution is fixed. Contributors decide only
the schedule on which to deploy their spending, not the extent to which they will
spend on public as opposed to private goods each period. As a result, the model
does not resemble the existing literature on dynamic public good provision so much
as Bergstrom et al.’s original paper. The relevant change is that I explore what
happens when individuals choose their contribution levels for an infinite stream of
public goods over which their respective preferences differ—i.e. funding at t, for all
t ≥ 0—in sequence, rather than simultaneously.

The model, despite its simplicity, allows us to draw some important and broad
conclusions about the implications of heterogeneous discounting for public good pro-
vision.

First, the common discounting assumption is knife-edge: even slight time pref-
erence differences, even (indeed especially) by small players, give rise to very dif-
ferent equilibria. In particular, time preference differences generate uniquely simple
equilibria in which spending is “polarized” in the sense above, with the impatient
exclusively responsible for public good funding before some date the patient exclu-
sively responsible after. Furthermore, such equilibria are “asymmetric”: they give
impatient players a Stackelberg-like first-mover advantage with no analogue in a
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common-discounting setting.
Second, time preference heterogeneity is highly payoff-relevant. The equilibria

that obtain under heterogeneous discounting can offer payoffs, at least for unusu-
ally patient parties, which differ dramatically from the payoffs they achieve when
constrained to spend as would seem optimal in the absence of time preference het-
erogeneity.

1.2 Related discounting literature

Though time preference heterogeneity has not been studied in the setting of dynamic
public good provision by private funders, three strands of literature have studied time
preference heterogeneity in adjacent settings. The results of the present paper prove
complementary to the central findings in each of these settings.

One strand concerns the collective allocation of private consumption over time—
i.e., under certain preference aggregability assumptions, the discounting behavior
of a representative agent—in a population of households with heterogeneous time
preferences. A classic observation from this literature is that consumption (Rader,
1981) and/or wealth (Becker, 1980; Ryder, 1985) can, in the limit, become entirely
concentrated in the hands of society’s most patient members simply because they
consume less and invest more. Another observation, closely related to the first, is
shown in an exchange economy by Gollier and Zeckhauser (2005) and with variations
elsewhere: that given complete markets, a representative agent, if one exists, will
exhibit a discount rate that declines with time to that of society’s most patient
members. In other words, interest rates fall as patient parties lend to their less
patient counterparts and command an ever-growing share of the financial market.
Heal and Millner (2014) argue that policymakers aiming to set discounting policy
for the provision of a public good, while deferring to the time preferences of their
constituents, do best to defer to this aggregated discounting schedule. As we will
see, similar dynamics play out among agents spending on public goods directly, and
the strategic logic of intertemporal polarization can make the tendency for wealth to
concentrate in patient hands—and the corresponding tendency of a representative
agent to grow more patient with time—even more extreme.

A second body of relevant research concerns optimal taxation by policymakers
more patient than their constituents. Farhi and Werning (2007, 2010) analyze op-
timal taxation in an intergenerational model where individuals save insufficiently,
from the patient social planner’s perspective, for their descendants. Household con-
sumption in these models is a public good: its provision satisfies the preferences
of multiple parties (the policymaker and the household itself) nonexcludably and
nonrivally. Similarly, von Below (2012), Belfiori (2017), and Barrage (2018) study
optimal carbon taxation and/or investment subsidization in contexts where present
production confers both future costs and future benefits (from climate damage and
capital accumulation respectively). An important lesson from this literature is that
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patient policymakers might like to invest resources for future spending, but that
to avoid crowding out private investment, it is often optimal for them instead to
subsidize private investment and tax private consumption.

Time preference heterogeneity has different implications in the context of optimal
taxation than in the context of private spending on public goods, however. The
former setting involves an asymmetry in the players’ strategy sets: households cannot
tax or subsidize policymakers, but policymakers can tax and subsidize households. At
least in the absence of political or informational constraints, policymakers endorsing
a given time preference rate can often use these tools to implement population-wide
behavior that is optimal or near-optimal from the policymaker’s perspective.

Finally, a small literature considers public good provision over time by commit-
tees of social planners with different time preference rates. One finding is that any
attempt to define and implement “optimal” spending plans by such a committee
faces some variety of the preference aggregation impossibilities faced in other social
choice contexts, as explored in detail by Chambers and Echenique (2018). Millner
(2020) proposes a method by which the discounting planners might reach a kind of
consensus, but such proposals are themselves inevitably vulnerable to disagreement.
Another concern of the literature is that, once an optimality criterion or consensus
has been reached, the resulting spending plans are typically time inconsistent. In
particular, Jackson and Yariv (2015) show that any social welfare function used in
this setting must be either dictatorial or time inconsistent, in that future committee
meetings will, if they use the same forward-looking social welfare function, decide
to revise the plans made by previous meetings—at least if these were made naively,
without taking the possibility of future revisions into account. Millner and Heal
(2018) therefore examine the collective decision-making of discounting committees
aware that they are playing a dynamic game with their future selves. They find that
attempts to implement weighted utilitarian social discounting in such a dynamic
game will generally be inefficient. By contrast, I find that decentralized private
actors strategically allocating public good contributions over time can implement
efficient, weighted utilitarian social discounting.

1.3 Outline

The structure of this paper is as follows.
Section 2 opens with three benchmark settings to which the dynamic public

good game is later compared. The first is that of dynamic private good provision.
The second and third are static transformations of a dynamic public good game:
an “open-loop” setting in which the parties simultaneously commit to a spending
schedule, and a “Stackelberg” setting in which the less patient player commits to
a spending schedule and the patient player then chooses his best response. The
former illustrates the intertemporal polarization, and the latter illustrates both the
intertemporal polarization and the first-mover advantage, observed in the dynamic
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game.
In Section 3, I explore the dynamic game. I find that it has many equilibria,

including efficient equilibria, but only one that is polarized; and that this polarized
equilibrium is also the only equilibrium that is continuous with equilibrium behavior
over a lengthening finite horizon. It implements the profile of spending schedules
observed in the equilibrium of the static Stackelberg game.

In Section 4, I introduce constraints in the form of a minimum and/or maximum
on the proportional rate at which a player may spend. I then illustrate the economic
significance of time preference heterogeneity by calculating a player’s willingness to
pay to move from the maximally polarized equilibrium of the constrained game to
the polarized equilibrium of the unconstrained game of Section 3. I find that, for an
atypically patient player (but not for an atypically impatient player), this willingness
to pay approaches the entirety of his budget as his budget share—his fraction of the
sum of the parties’ budgets—goes to zero. That is, when most of the funding for his
chosen cause is governed impatiently, a patient player finds a disbursement minimum
approximately as costly as a total expropriation.

Finally, Section 5 briefly shows that intertemporal polarization is not an artefact
of the simple preference specification of the games above, in which each player’s flow
utility is isoelastic in total flow spending, but holds under much weaker preference
conditions. Since intertemporal polarization largely drives the subsequent results
(on the impatient first-mover advantage and the costs of spending constraints), this
suggests that the conclusions of Section 3 and Section 4 are relatively robust.

Section 6 concludes.

2 Benchmarks

To build our intuitions about the implications of time preference heterogeneity among
public good funders, we consider three benchmarks.

First, in Section 2.1, we review the implications of time preference heterogeneity
among households purchasing private goods, making the standard observation that
optimal spending rates rise (i.e. optimal saving rates fall) continuously with rates of
time preference.

In Section 2.2, we study a static game in which two players with different discount
rates simultaneously set schedules on which they will spend on a public good. (It is
the “open loop” transformation of the dynamic public good game studied in the next
section.) This game has a unique and fully polarized Nash equilibrium, with only the
less patient player spending early in time and only the more patient spending later
in time. It illustrates how time preference differences can motivate more extreme
differences in saving behavior in the context of public good funding than in the
context of private good funding.

The last benchmark, in Section 2.3, is a two-period game, like the static game
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above but with the less patient player as Stackelberg leader: choosing her spending
schedule before the more patient player chooses his. The game has a unique and fully
polarized subgame perfect equilibrium, like the Nash equilibrium of the (fully) static
game but with the impatient player using her first-mover advantage to shift spending
toward the present. It illustrates that the strategic polarization observed in a static
setting can be found in (at least something closer to) a true dynamic setting, but
that the dynamics of a public good game can also introduce an asymmetry between
the positions of more and less patient parties.

The dynamic game of the next section, which lies at the heart of this paper, will
be used to explore this polarization and this asymmetry in more detail.

Uniqueness and measure-zero deviations

A household’s optimal spending schedule, and the equilibria of the benchmark public
good games, were described above as unique. Strictly speaking, since we will work
in continuous time and assume that measure-zero deviations in spending rates do
not affect payoffs, they are unique only up to measure-zero deviations.

Throughout the paper, we will take the standard approach of restricting our
attention to right-continuous spending schedules—i.e. spending schedules that are
right-continuous everywhere, and continuous everywhere except at a finite set of
jump discontinuities—in both individual optimization decisions and strategic inter-
actions. Since distinct right-continuous spending schedules differ from each other at
a positive-measure set of times, a right-continuous spending schedule that satisfies
some property uniquely up to measure-zero deviations also satisfies it uniquely under
a right-continuity restriction. However, the “unique” optimal spending schedules and
equilibria found in Propositions 1 and 3–5 are unique up to measure-zero deviations,
not merely uniquely under the restriction of right-continuity. This is shown in the
proofs of these propositions, in the relevant appendices.

The proofs of some later propositions use right-continuity, so the assumption of
right-continuity is imposed throughout the body of the paper for consistency.

2.1 Private goods

Recall the familiar “cake-eating” problem of a household that is the sole provider
of its own consumption over an infinite horizon. Denote the size of the household’s
budget at time t = 0 by B. Assume that flow utility u at time t is an isoelastic
function,6 with inverse elasticity of intertemporal substitution γ > 0, of the spending

6We assume isoelasticity until the generalization of Section 5 because time-separable preferences
(2) are homothetic if and only if flow utility is isoelastic. Homotheticity is desirable here because
Proposition 2, and the analogous “proportional willingness to pay” results of Section 4.3 that are
at the heart of this paper, require it. Though similar results may obtain under weaker conditions,
the inability to discuss proportional costs and benefits would come with some loss in clarity.
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rate xt ≥ 0:

u(xt) =

{
x1−γ
t

1−γ
, γ ̸= 1;

ln(xt), γ = 1.
(1)

The household faces a constant instantaneous real interest rate r and a constant
instantaneous time preference rate δ. The household’s problem is then to choose a
right-continuous schedule (i.e. spending schedule) x = {xt}t≥0 that maximizes∫ ∞

0

e−δtu(xt)dt (2)

subject to the budget constraint ∫ ∞

0

e−rtxtdt ≤ B. (3)

Let

α ≡ rγ − r + δ

γ
. (4)

Proposition 1. Optimal private schedule
Under budget constraint (3), if α > 0, utility function (1)–(2) is uniquely maximized
by schedule

xt = Bαe(r−α)t, t ≥ 0. (5)

If α ≤ 0, there is no optimal schedule.

Proof. Proofs may be found in many introductions to dynamic optimization (see
e.g. Barro and Sala-i-Martin (2004), ch. 2.1), but for convenience, one may be found
in Appendix A.1, along with an expression for the payoff to following the optimal
schedule.

Note that, since γ > 0 by assumption, the condition that α > 0 is equivalent to the
condition that

δ > r(1− γ). (6)

If (6) holds, the optimal spending rate as a proportion of the budget at any time is
constant and equal to α.

The optimal spending rate is sensitive to the discount rate: the lower δ is, the
lower α is, and the more slowly it is optimal to spend. In fact, when (6) is violated,
a lower proportional spending rate is always preferable to a higher one. Since a
permanent spending rate of zero is of course worst of all, an optimal schedule does
not exist. Note that (6) does hold whenever γ > 1, r > 0, and δ ≥ 0. That is, under
the standard assumptions that r > 0 and γ > 1, an optimal schedule exists even
under full patience.

As (5) reveals, the optimal private spending rate is continuous in δ, throughout
the region in which an optimum exists. It is shown below that this continuity does
not generally hold in the setting of public good provision.
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Costs of over- or under-spending

Now imagine that a household with time preference rate δ is required to spend its
budget as would be optimal according to some time preference rate δ̃ ̸= δ, fixing r
and γ. Assume that δ and δ̃ both satisfy (6), as above, but here further assume that

γ ≤ 1

or δ̃ < δ
γ

γ − 1
+ r. (7)

If neither part of this condition is satisfied, the optimal schedule given δ̃ sends
spending to zero quickly enough that, over the infinite horizon, it produces infi-
nite δ-discounted disutility. Note that δ̃ < δ + r is sufficient for the condition to
hold.

Let α̃ be defined as α is in (4), but with δ̃ in place of δ. Then define

η ≡


(

α̃+δ−δ̃
α

) 1
1−γ

, γ ̸= 1;

e
δ̃
δ
−1, γ = 1.

(8)

η may be interpreted as a measure of the extent to which δ̃ exceeds δ. Observe that
η > 1 when δ̃ > δ and η < 1 when δ̃ < δ.

Finally, let w(B) denote the household’s willingness to pay to avoid the spending
rate requirement, as a proportion of its budget B.

Proposition 2. Bounded WTP for optimal private schedule
w(B) = 1− α̃

αη
< 1, independent of B.

Proof. A proof may be found in Appendix A.2, along with an expression for the
payoff to spending δ̃-optimally.

So the spending rate requirement—the requirement to spend at proportional rate
α̃ rather than α—lowers the household’s utility by as much as a tax of proportion
1− α̃

αη
of its budget. As shown in Section 4.3, this cost can be greatly magnified in

the setting of public good provision. In particular, as a patient player grows small,
his proportional willingness to pay to avoid a spending rate minimum generally rises
to 1.

2.2 Open-loop game: intertemporal polarization

Consider the following static game, concerning the allocation of spending on a public
good across periods.
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There are two players, H and L. Each player i chooses a piecewise right-
continuous individual schedule xi ≡ {xi

t}t≥0 subject to the budget constraint∫ ∞

0

e−rtxi
tdt ≤ Bi.

A pair of individual schedules (xH , xL), called simply a “schedule”, is denoted x. The
sum of the players’ schedules xH + xL is called a “collective schedule” and denoted
X.

H and L share an isoelastic flow utility function u(·), but now flow utility is a
function of total flow spending by both parties: the good being spent on is a public
good. The only difference between the players’ preferences is that they discount at
different rates. H discounts at the higher rate:

δH > δL > r(1− γ). (9)

Thus i’s payoff, as written as a function of the schedule, is

U i(x) =

∫ ∞

0

e−δitu
(
xH
t + xL

t

)
dt.

U i(·) may also be written as a function of a collective schedule.
Let U denote a payoff profile (UH , UL). Define αi as in (4), with δi in place of δ.
This game is the open-loop transformation of the dynamic public good game

studied throughout the next section, so we will call it the “open-loop game”.

Proposition 3. Existence and uniqueness of Nash equilibrium in the
open-loop game

The game above has a unique Nash equilibrium x(o):

x
H(o)
t =

{
BHαH Mo

Mo−1
e(r−αH)t, t < to;

0, t ≥ to,
(10)

x
L(o)
t =

{
0, t < to;

BLαL M o αL

αH e(r−αL)t, t ≥ to,
(11)

where

to ≡ ln(M o)
/
αH , (12)

M o ≡ 1 +
BHαH

BLαL
. (13)

Proof. See Appendix A.3.
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to

xH(o)

xL(o)

t

X
(o)
t

Fig. 1: Equilibrium schedule of the open-loop game

This game is essentially a special case of the static public good game analyzed by
Bergstrom et al. (1986), but with a continuum of public goods: spending at each t,
for t ∈ [0,∞). As in the analogous Bergstrom et al. case, each good here is provided
by exactly one funder, and when a funder provides a good, she always also is the
provider of all goods about which she cares relatively more. Since L cares relatively
more than H about spending at t the later t is, there is a threshold time to such that
H is the sole funder before to and L is the sole funder after. Unlike in the case of
the private good, therefore, even a slight time preference difference motivates a big
difference in behavior between the public good funders.

We can also see from (10) and (11) that i’s spending growth rate here equals
r − αi across the period during which i spends. Since r − αi = (r − δi)/γ, by (5)
this is i’s optimal spending growth rate: the growth rate i chooses when she is the
only funder. If i’s spending growth rate were not δi-optimal across t with xi

t > 0,
xi(o) would not be an equilibrium strategy; i would prefer marginal reallocations of
funding across periods.

Finally, substituting (12) into (10) and (11), we see that the collective spending

rate is continuous at to. That is, limt→to− x
H(o)
t = x

L(o)
to . If the spending rate rose

discontinuously at to, L would do better to reallocate some spending from to+ϵ to to−
ϵ for some sufficiently small ϵ > 0. Likewise, if the spending rate fell discontinuously,
H would do better to reallocate marginal spending forward. The relative budget
sizes, the spending growth conditions, and the continuity condition pin down to and
thus the equilibrium.

2.3 Stackelberg game: first-mover advantage

Finally, consider a two-period game, identical to the game above except that H is
the “Stackelberg leader”. That is, suppose that, in the first period, H sets a feasible
spending schedule xH , and in the second period, L observes xH and sets a feasible
spending schedule xL in response. H’s strategy set is thus the set of piecewise right-
continuous spending schedules satisfying the budget constraint imposed by BH , and



12

L’s strategy set is the set of functions from feasible choices of xH to feasible choices
of xL.

Define η as in (8), with δH in place of δ and δL in place of δ̃. Since δL < δH , we
have η ∈ (0, 1).

Proposition 4. Existence and uniqueness of SPE in the Stackelberg game

The game above has a unique subgame perfect equilibrium, which implements the
schedule x∗:

xH∗
t =

{
BHαH M∗

M∗−1
e(r−αH)t, t < t∗;

0, t ≥ t∗,

xL∗
t =

{
0, t < t∗;

BLαL M∗ αL

αH e(r−αL)t, t ≥ t∗,

where

t∗ ≡ ln(M∗)/αH , (14)

M∗ ≡ 1 +
BHαH

BLαL
η.

Proof. See Appendix A.4.

t∗

xH∗ xL∗

t

X∗
t

Fig. 2: Equilibrium schedule of the Stackelberg game

Since η < 1, t∗ < to: the regime-switching time occurs earlier in the Stackelberg
case than in the case where the players set their spending plans simultaneously.
Furthermore, recall that in the open-loop (i.e. simultaneous-move) case, spending is
continuous at to. Here, the spending rate falls discontinuously at t∗, as H allocates
budget BH over a shorter time interval and L allocates BL over an infinite horizon
beginning earlier.

UH(x∗) > UH(x(o)). This follows immediately from the uniqueness of the SPE in
the Stackelberg game, and from the fact that H can attain the open-loop schedule
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in it: if H chooses xH = xH∗, L’s best response is xL∗ by Proposition 3. Conversely,
UL(xo) > UL(x∗). This follows from the fact that X∗ can be obtained by beginning
with X(o), decreasing funding at times t ≥ t∗, and increasing funding at times t < t∗.
L disprefers any marginal reallocation of funding from times after t∗ to times before
t∗ from the X(o) baseline, and because u(·) is concave, L only disprefers non-marginal
reallocations the more strongly. In short, the Stackelberg game gives H a first-mover
advantage.

3 Dynamic game

The open-loop and Stackelberg games suggest two ways in which time preference
differences can shape public good provision. The first is by motivating what might
be called intertemporal polarization. The second is by giving impatient parties a
first-mover advantage. We will now see how these stylized results obtain in a more
realistic dynamic setting, in which players can continuously observe each other’s
spending rates and update their own future spending plans. Equilibrium behavior in
continuous time is defined precisely in Section 3.1, and the two implications above
are detailed in Section 3.2, under an equilibrium refinement.

Unlike the benchmark settings, however, the dynamic setting admits a wide range
of equilibria. This is discussed in Section 3.3.

3.1 Setup

Equilibrium behavior in the continuous-time dynamic setting will be defined as a
limit of equilibrium behavior along a sequence of dynamic games with ever more
frequent discrete-time monitoring, indexed by n ≥ 0. A justification for this modeling
assumption (and other complications that must be introduced) is given below, under
“Equilibria and motivations”.

As in the benchmark games, there are two players, H and L. Player i begins
with budget Bi > 0 and faces a constant instantaneous real interest rate r. Player
i’s realized spending rate at t is denoted xi

t, and i’s payoff is

U i(x) ≡
∫ ∞

0

e−δitu(xH
t + xL

t )dt, (15)

where u(·) is isoelastic, as given by (1), and the time preference rates satisfy (9).
To summarize the section: game n partitions the non-negative real line into a

(perhaps infinite) number of periods of positive length. At the beginning of each
period, each player observes the history of play across previous periods and publicly
chooses a time weakly before the end of the period at which she will announce her
spending history since the start of the period. Each player then sets a spending plan
until the first announcement. When i announces, −i observes the history and sets a
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spending plan to the end of the period. If −i has not yet announced in this period,
then she also publicly plans an announcement at some time weakly before the end
of the period, and i sets a spending plan until −i’s announcement.

Schedules

A schedule for i, denoted xi, is again a spending rate for i at every time t ≥ 0:

xi ≡ {xi
t}t≥0.

Given an interval I ⊂ [0,∞) that is closed below and open above, a truncated
schedule for i, denoted xi

I , is a spending rate for i at every time t ∈ I:

xi
I ≡ {xi

t}t∈I .

A truncated schedule for i with I = [0, t), for finite t, is a partial schedule for i and
may be denoted xi

|t.

A schedule x ≡ (xH , xL) is a pair of player schedules. A truncated or partial
schedule, xI or x|t, is a pair of such player schedules over the same interval.

Given a schedule x, a collective schedule X ≡ xH +xL is a total spending rate at
every time s ≥ 0. Truncated and partial collective schedules are defined and denoted
analogously to such player schedules.

Given a truncated schedule xI ,

U i(xI) ≡
∫
I

e−δi(t−min(I))u
(
xH
t + xL

t

)
dt.

U i(·) is also defined over collective [truncated] schedules. Payoff profiles U(·) are
pairs of individual payoffs, as previously.

A partial schedule x|t is feasible if it is right-continuous and∫ t

0

e−rsxi
sds ≤ Bi ∀i.

The feasibility of a schedule is defined likewise.
Given a partial schedule x|t,

Bi
t(x|t) ≡

(
Bi −

∫ t

0

e−rsxi
sds
)
ert

denotes i’s implied budget at time t ≤ t. Given a schedule x, Bi
t(x) can be defined

likewise, with no restriction on t. For simplicity, Bi(x|t) ≡ Bi
t(x|t).

B = BH+BL denotes the (initial) collective budget, and b ≡ BL/B. Like the Bi,
B and b can be written with time subscripts or as functions of a [partial] schedule.
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Strategies

In each game, a set of times are called grid points. The set of grid points in game n
is denoted G(n) and includes 0. The grid sequence G ≡ {G(n)}∞n=0 is such that

• for all n, G(n+1) ⊃ G(n) and G(n) is locally finite (so that G(n) ∩ [0, T ] is finite
for all T ); and

• ∪∞
n=0G

(n) is dense in R+.

Given a time t ≥ 0,
τ (n)(t) ≡ max

(
G(n) ∩ [0, t]

)
denotes the largest grid point in game n less than or equal to t, and τ (n)′(t) denotes
the smallest grid point in game n greater than t. Given τ ∈ G(n), τ (n)′ ≡ τ (n)′(τ)
denotes the subsequent grid point in game n.

A period of game n is an interval [τ, τ (n)′) with τ ∈ G(n).
Henceforth, where doing so will come with no loss of clarity, we will fix n and

drop the “(n)” superscripts.

An announcement ξiτ is a time associated with a player i and a grid point τ with
ξiτ ∈ [τ, τ ′).

A node h|t is a history of play up to t: a feasible partial schedule across [0, t),
denoted x(h|t), paired with a set of announcements {ξiτ (h|t)} that includes exactly
one entry-pair (one entry for each player) for each τ ∈ G ∩ [0, t) and none for τ > t,
and such that (i) if t ∈ G and ξit(h|t) is defined for both i, then ξHt (h|t) = ξLt (h|t);
and (ii) if t ̸∈ G, ξiτ(t)(h|t) = t for some i.

If no announcement associated with some i, τ is contained in {ξiτ (h|t)}, we write
ξiτ (h|t) = ∅. Observe that every node h|t is of one of five types:

1. t ∈ G, ξit(h|t) = ∅ for both i.

2. t ∈ G, ξit(h|t) > t for one or both i (and = ∅ otherwise).

3. t ̸∈ G, ξiτ(t)(h|t) = ∅ for one i (and ξ−i
τ(t)(h|t) = t).

4. t ̸∈ G, ξiτ(t)(h|t) > t for one i (and ξ−i
τ(t)(h|t) = t).

5. t ̸∈ G, ξiτ(t)(h|t) ≤ t for both i (and = t for one or both i).

The interpretation of these nodes is made clearer by the sequence of play outlined
just below.
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A node of type 1 or 3 is a pre-announcement node. A node of type 2, 4, or 5 is
a post-announcement node. Given a post-announcement node h|t,

ξ̂(h|t) ≡ max
i,τ

{ξiτ (h|t)} if h|t is of type 2 or 4,

≡ τ ′(t) if h|t is of type 5

denotes the time of the next node. We will sometimes distinguish pre- and post-
announcement nodes occurring at the same time by denoting the former h−

|t and the

latter h+
|t .

The game begins with a trivial node of type 1 at t = 0.

Individual budgets Bi(·), the collective budget B(·), or L’s budget share b(·) may be
written as functions of nodes rather than of their associated partial schedules.

The set of nodes is denoted H. We will say for simplicity that every element of
H is a node for each player, though as we will see, some players take no substantive
action at some nodes.

A strategy for i in game n, denoted σi, is a function that maps h|t ∈ H to one of
the following actions. The list below also defines how the subsequent node follows
from the action profile σ(h|t).

• If h|t is of type 1: σi(h|t) is an announcement in (t, t′].
The subsequent node occurs at t and is of type 2, and is h|t appended with

ξjt = σj(h|t) if σ
j(h|t) ≤ σ−j(h|t) for each j.

• If h|t is of type 2: σi(h|t) is a feasible spending plan to the time of the next

node ξ̂(h|t).

In general a feasible spending plan from node h|t to t > t is a truncated schedule
for i, xi

[t,t)
, that is right-continuous and satisfies the budget constraint

∫ t

t

e−r(s−t)xi
sds ≤ Bi(h|t). (16)

If ξ̂(h|t) = t′, the subsequent node occurs at t′ and is of type 1. If ξHt (h|t) =

ξLt (h|t)(= ξ̂(h|t)) < t′, the subsequent node occurs at ξ̂(h|t) and is of type 5.

Otherwise, the subsequent node occurs at ξ̂(h|t) and is of type 3. In all cases,
the subsequent node is h|t with the associated partial schedule appended with
the players’ spending plans.

• If h|t is of type 3...

a. and ξiτ(t)(h|t) = ∅: σi(h|t) is an announcement σi(h|t) ∈ (t, τ ′(t)].
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b. and ξiτ(t)(h|t) = t: σi(h|t) = ∅.

Let j denote the player whose τ(t)-announcement at h|t was undefined. The
subsequent node occurs at σj(h|t) and is of type 4, and is h|t appended with
j’s announcement.

• If h|t is of type 4: σi(h|t) is a feasible spending plan to ξ̂(h|t).

If ξ̂(h|t) = τ ′(t), the subsequent node occurs at τ ′(t) and is of type 1. Otherwise,

the subsequent node occurs at ξ̂(h|t) and is of type 5. In either case, the
subsequent node is h|t with the partial schedule appended with the players’
spending plans.

• If h|t is of type 5: σi(h|t) is a feasible spending plan to τ ′(t).
The subsequent node occurs at τ ′(t) and is of type 1, and is h|t appended with
the players’ spending plans.

i’s strategy set (in game n, though we will continue to suppress the superscript) is
denoted Σi. A strategy profile (σH , σL) is denoted σ. The set of strategy profiles is
denoted Σ. We will not introduce mixed strategies.

At h|t ∈ H, if players adopt strategy profile σ, the resulting schedule is denoted
x(h|t, σ). For simplicity, x(σ) ≡ x(∅, σ) denotes the schedule generated by σ. The
collective schedule resulting from σ following h|t is likewise denoted X(h|t, σ), etc.
h−
|s(h|t, σ) / h

+
|s(h|t, σ) is the pre-/post-announcement node implemented by σ at s ≥ t

given h|t, if such a node exists. (Note that it must if s ∈ G.)

Equilibria and motivations

We will take the natural equilibrium concept to be SPE. A strategy profile σ∗ ∈ Σ
is an equilibrium (of game n) if

U i
(
x[t,∞)(h|t, σ

∗)
)
≥ U i

(
x[t,∞)(h|t, (σ

i, σ∗−i))
)

∀i ∀h|t ∈ H. (17)

Though including announcements makes almost no difference to the structure
of the game when n is large, it simplifies our efforts to characterize its equilibria.
Without announcements, in an equilibrium of game n in which H exhausts her
budget, she typically does so at a grid point—an element of G(n)—because she places
some value on L immediately observing her budget-exhaustion and beginning to
spend. So as we vary parameters of the game (e.g. as we vary the initial budgets at
the node initiating a subgame, by exploring previous-period deviations), the time at
which H chooses to exhaust her budget typically jumps between elements of G(n).
Allowing the players to make announcements removes the additional value to H
of spending down on a grid point, letting her equilibrium spend-down point vary
continuously with the history (and the parameter values) of the game.
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The complications induced by H’s desire to spend down at a grid point could be
addressed in various ways other than the approach taken here, but the alternatives
explored introduce challenges of their own. Four of these are summarized below.

• If every time t were made a node, this would confront the difficulty that when
nodes are dense in time, the sequence of play following a given node may not be
well-defined as a function of the strategy profile. See e.g. Stinchcombe (2013),
Example 4.2.1.

• If players were permitted to create mid-period nodes arbitrarily many times
instead of just once, this would not allow us to solve for within-period be-
havior (or game-wide behavior, in the finite-horizon cases discussed below) by
backward induction.

• The game could be defined so that, at ξi ̸= ξ−i, ̸∈ G, i reveals his own recent
spending to −i and lets −i change her plans, without learning −i’s recent
spending or gaining the ability to change his own plans. This would render
x(h|t, σ) undefined for some strategy profiles σ and nodes h|t with t ̸∈ G. It
would thus require a slightly more complex definition of equilibrium. After a
natural re-definition, it would yield the same equilibrium spending behavior as
obtains in the game defined above.

• The game could be defined so that players place mid-period nodes without
announcing them in advance. However, the natural equilibrium concept is
then not SPE but something imposing compatibility between actions and out-
of-equilibrium beliefs.

At h|t, even if in equilibrium −i places a node at ξ−i ∈ (t, τ ′(t)), i must plan
spending all the way to τ ′(t) in the event that the expected announcement
does not arrive. But SPE imposes no restriction on i’s spending plans after
ξ−i, and unrealistic plans for xi after ξ−i (such as immediately spending i’s
entire budget) can in turn deter −i from setting ξ−i later. To rule out these
“non-credible threats”, we must then ensure that i’s spending plans after ξ−i

are optimal for i given reasonable beliefs about −i’s behavior in the event that
−i’s expected announcement does not arrive. This too appears to generate
similar results but with significantly greater complexity.

Polarization

A polarized [truncated/partial] schedule is a [truncated/partial] schedule x such that,
for some time t̃,

i. xH
t = 0 for t ≥ t̃ and

ii. xL
t = 0 for t < t̃.
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A polarized equilibrium (of game n) is an SPE σ∗ such that, for all nodes h|t,
x[t,∞)(h|t, σ

∗) is polarized.

Equilibrium schedules and payoffs

Schedule x is a [polarized] equilibrium schedule if there is a grid sequence and a
sequence of [polarized] equilibria {σ(n)} along the corresponding game sequence such
that

i. x(σ(n)) converges pointwise to x almost everywhere and

ii. U(x(σ(n))) → U(x)

as n → ∞.
Note that “polarized equilibrium schedules” are schedules implemented by polar-

ized equilibria, rather than merely equilibrium schedules that are polarized. These are
distinct because an equilibrium may implement a polarized schedule on the equilib-
rium path (i.e. from the initial node) but not from some off-path nodes.

The game sequences defined above admit many equilibrium schedules. To study the
payoff implications of changing the parameters or structure of the games, therefore,
it will often be useful to employ a refinement that guarantees uniqueness. As shown
in the following subsection, uniqueness is guaranteed if we restrict our attention
to equilibrium schedules that resemble the (unique) equilibrium schedules of finite-
horizon transformations of the game. This is arguably the behavior it is most natural
to take as a baseline, in the absence of coordination on some pattern of promised
rewards and punishments.

Define T -horizon game n to be the discrete-time game n defined above, but with
the ∞ at the top of the integrals in (15) and (17) replaced with a finite end-time
T > 0. The definition of T -horizon equilibrium schedule follows immediately.

An equilibrium schedule x is a limit equilibrium schedule if there is a continuum of
T -horizon equilibrium schedules {x[T ]}, for T > 0, such that x[T ] converges pointwise
almost everywhere to x as T → ∞.

A payoff profile U is an equilibrium payoff if there is an equilibrium schedule x with
U(x) = U .

Existence, uniqueness, and robustness

We impose relatively few restrictions on the grid sequence, and define an equilibrium
schedule to be one compatible with any grid sequence, to ensure that results about
the uniqueness of a given pattern of equilibrium behavior in continuous time are
robust to alternative definitions of equilibrium behavior in continuous time.
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The flexible definition of a grid sequence will also let us easily note when an
existence result is robust, in that it is compatible with all grid sequences.

3.2 The polarized equilibrium

The open-loop and Stackelberg games have a unique equilibrium, and in each case
the equilibrium schedule is polarized. The dynamic game has many equilibrium
schedules, as noted in the next subsection. Nevertheless, there is a sense in which
polarized behavior is most natural in the dynamic setting as well.

Proposition 5. Existence, uniqueness, and Stackelberg-equivalence of
limit / polarized equilibrium schedule
Defining x∗ as the Stackelberg schedule of Proposition 4, in the dynamic setting of
Section 3.1

a. x∗ is the unique limit equilibrium schedule.

b. x∗ is the unique polarized equilibrium schedule.

c. x∗ is an equilibrium schedule under any grid sequence.

Proof. See Appendix A.5.

Polarization, and the associated impatient first-mover advantage, are thus not
only equilibrium-compatible in an infinite-horizon dynamic setting but uniquely com-
patible with a natural refinement. No matter how small the difference in discount
rates, only polarized behavior is continuous with equilibrium behavior on an ever-
lengthening finite horizon.

By contrast, suppose the players have the same discount rate δ, and let X(δ)

denote the δ-optimal collective schedule for the collective budget. Then, trivially,
for any horizon (finite or infinite) and any set of grid points, any schedule x with
xH + xL = X(δ) is an equilibrium schedule.

3.3 Superior equilibrium payoffs

Proposition 6. Superior equilibrium payoffs
Every feasible payoff profile which is Pareto-superior to U(x∗) is an equilibrium payoff
profile.

Proof. See Appendix A.6.

As noted in Section 1.1, the standard intuition for efficiency results of this kind
is that, given perfect monitoring in continuous time, deviating from an efficient
equilibrium gives the deviator only an instantaneous benefit (say, by increasing his
own consumption while free-riding on other players’ public good contributions) but
induces a positive-sized punishment (say, by decreasing subsequent contributions).
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This intuition does not apply straightforwardly to this setting, where there is only a
public good, and L’s temptation to defect is a temptation to pay an instantaneous
cost (by “underspending”) for a long-term benefit.

Here, a proof of equilibrium-compatibility for every efficient feasible payoff profile
Pareto-superior to U(x∗) can be sketched as follows. A proof for the case of inefficient
Pareto-superior payoff profiles is similar.

Given a collective budget B and an efficient collective schedule X(a) that is
Pareto-superior to X∗, there is a range of values of b such that both players pre-
fer X(a) to X∗[b], the Stackelberg schedule that would result from b (fixing B). The
range may be denoted [bX(e) , bX(e) ]. Given the starting budget share for L b0, and
given efficient X(a) with b0 ∈ [bX(a) , bX(a) ], can the parties be required to spend so
that, for all t, we maintain bt ∈ [b

X
(a)
[t,∞)

, b
X

(a)
[t,∞)

]? That is, can we fund X(a) while

ensuring that bt never falls low enough that H would prefer to switch to the Stackel-
berg schedule implemented given bt, or rises high enough that L would? If so, there
is an SPE in which X(a) is maintained, with deviations punished by reversions to
the polarized equilibrium.

L’s concern for the shape of the collective schedule in later periods is greater
than H’s (relative to their concerns for its shape in earlier periods). To be efficient,
therefore, X∗ must more closely resemble an impatient-optimal schedule early in
time and a patient-optimal schedule later in time. So b

X
(a)
[t,∞)

and b
X

(a)
[t,∞)

increase in t.

An SPE can maintain the value of b around t by requiring the players to con-
tribute to X

(a)
t in proportion to their budgets around t. Less obviously, an SPE can

induce bt to rise more quickly than b
X

(a)
[t,∞)

around t by requiring H to contribute all

of X
(a)
t . This can be shown by contradiction. Suppose H weakly prefers X

(a)
[t,∞) to

the Stackelberg schedule that would result from budget-fraction bt, but, after con-
tributing xH

s = X
(a)
s for s ∈ [t, t), disprefers X

(a)
[t̄,∞) to the Stackelberg schedule with

budget-fraction bt̄. Then H prefers (i) xH
s = X

(a)
s , xL

s = 0 for s ∈ [t, t̄), followed

by a polarized schedule, to (ii) the collective schedule X
(a)
[t,∞). But (i) is a polarized

truncated schedule, beginning at t, with the patient budget spent patient-optimally
once L begins spending; and H’s favorite truncated schedule in this class is the
Stackelberg schedule. So H prefers the Stackelberg schedule with budget-fraction bt
to X

(a)
[t,∞). This contradicts our assumption.

4 Constraints

As noted in Section 2.2, a static public good game typically exhibits a unique Nash
equilibrium, which is “polarized”, in the sense that each project is funded entirely by
the player(s) who most relatively value it. The prediction of polarization is relatively
intuitive in a static context, as there is typically little to prevent polarization in a
static public good game. A player is free not to contribute to any given project, and
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free to contribute as much as she would like. Section 3.2 offers a reason to expect a
unique pattern of polarized behavior in a dynamic setting as well, when players have
different discount rates and are free to spend as much or as little as they would like
at any given time.

But intertemporal polarization may be constrained in two ways. First, a high-
discount-rate player may not be able to spend down (the present value of) her budget
quickly enough to achieve polarization, e.g. due to a borrowing constraint. Second,
a low-discount-rate player may not be able to spend his budget slowly enough due
to some sort of saving constraint, such as the legal disbursement minimum to which
philanthropic foundations are often subject.

Sections 4.1 and 4.2 introduce these constraints respectively. Unsurprisingly, the
constrained game can exhibit what might be called a constrained polarization, with
one player bound by the spending minimum or maximum and the other spend-
ing more slowly or quickly than they would in isolation to offset the other player’s
putative over- or under-spending. In the constrained-polarized setting, however,
sufficiently tight constraints of either kind are found to eliminate the first-mover
advantage the impatient player enjoys under full polarization in the unconstrained
setting.

Section 4.3 then explores the costs that these constraints impose on the play-
ers. An asymmetry is found: although spending minima counteract the first-mover
advantage, spending minima in this setting can be arbitrarily more costly for the
patient, in terms of proportional willingness to pay to remove them, than spending
maxima can be for the impatient.

Comparative statics

Given a precisely defined spending constraint, let “constrained game n” be the con-
strained analog to game n. That is, let it be the game defined in Section 3.1 but
with a strategy restriction imposed on the players: a condition that the spending
plans assigned to each node must satisfy beyond the budget constraint (16) and
right-continuity. The definition of an equilibrium schedule for the constrained game
sequence then follows immediately.

To quantify the costs of a given constraint, we will identify a feasible schedule
x that is in a natural sense as polarized as is feasible under the constraint, with
H spending as quickly and/or L spending as slowly as is feasible (depending on
the constraint(s) imposed). We will verify that x is an equilibrium schedule of the
constrained game sequence. We will then compare the payoff profiles U(x) and
U(x∗). Without picking particular equilibrium schedules in the constrained and
unconstrained cases respectively, comparative statics quantifying the impacts of a
given constraint are not well defined.

Our motivation for working with an infinite horizon is thus not the standard
motivation to explore coordination through repeated interaction. Rather, we will
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work with an infinite horizon in order to most simply present the results of Section
4.3, which hold in the limit as the time horizon grows large.

Parameter restriction

Throughout this section, we will assume (in addition to parameter restriction (9))
that

γ ≤ 1 or δH < δL
γ

γ − 1
+ r. (18)

Note that (18) is (7) with δL, δH replacing δ, δ̃ respectively. As in Proposition 2,
the motivation for the restriction is to rule out cases in which δH-optimal spending
yields infinite δL-discounted disutility.

4.1 Spending maxima / borrowing constraints

Given i’s schedule xi, let us refer to

xi
t/B

i
t

as i’s proportional spending rate at t. We will analyze spending maxima that take
the form of a constant upper bound α on the proportional spending rate that any
player can exhibit at any time. Formally, we will restrict the games of Section 3
by requiring that, at each post-announcement node h|t, i’s spending plan xi

[t,ξ(h|t))

satisfy

xi
s ≤ Bi

s(x|s)α (19)

in addition to the budget constraint (16) and right-continuity.
We will also assume that

α ∈ [αL, αH ]. (20)

We will maintain the existence of “announcements” to make the games studied
here as comparable as possible to those of Section 3, though they could be eliminated
without any impact on the results below.

Motivations

Though spending can of course be constrained in various ways, we will study a
proportional spending cap (19) for two reasons.

First, our interest in spending maxima stems in part from the observation that
polarization may be limited by the less patient player’s borrowing constraints, and
a cap on proportional spending is roughly equivalent to a borrowing constraint.
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Suppose a player has a capital stock at t of B̃i
t and a stream of income—e.g. donor

contributions—that grows at a constant rate g < r, so that inflows at s equal Cegs

for some C > 0. The present value (at t) of her budget at t is then

Bi
t = B̃i

t +

∫ ∞

t

Cegse−r(s−t)ds = B̃i
t +

Cegt

r − g
.

If she cannot borrow against future income, her spending rate at t is unconstrained
as long as B̃i

t > 0. When B̃i
t = 0 and her spending is constrained, however, she

can spend at an absolute rate of at most Cegt, and so at a proportional rate of at
most r − g. And if B̃i > 0 but i would like to sustain a proportional spending rate
greater than r− g, then unless she indefinitely refrains from doing so, she eventually
exhausts her budget and confronts the proportional spending cap of r − g.

Second, upper bounds on proportional spending are precisely analogous to the
legal disbursement minima—lower bounds on proportional spending—which are an-
alyzed in Section 4.2 and which this paper is written in part to explore.

Our focus on the α ∈ [αL, αH ] case (20) also has two motivations.
First, this is the region which most straightforwardly illustrates the implications

of constraining the impatient but not the patient from “polarizing”. If α < αL,
so that even L would prefer faster spending than is feasible, then there is little
to analyze. The uniquely Pareto-dominant feasible schedule is the one in which
xH
t /B

H
t = xL

t /B
L
t = α ∀t, as implementable e.g. with the simple SPE in which

players spend as quickly as possible at every node. If α > αH , on the other hand,
then the spending maximum only partially limits polarization by H, and adds kinks
to the maximally-polarized equilibrium strategies that complicate the exposition to
little benefit. (Recall from Proposition 1 that, in the absence of a more patient
funder, H would choose to set xH

t /B
H
t = αH ∀t. In any equilibrium-compatible

polarized schedule in which H exhausts her budget at t
∗
, limt→t

∗− xH
t /B

H
t = ∞.)

Second, if the rate g at which the players’ income streams grow equals the eco-
nomic growth rate, and if a representative household is not borrowing- or saving-
constrained, then the players’ proportional spending cap α = r − g equals the rep-
resentative household’s optimal proportional spending rate. When the public good
under consideration is not a luxury or necessity good, α ∈ [αL, αH ] then amounts to
the relatively natural assumption that its funders are not all strictly more or strictly
less patient than the representative household.

Constrained polarization

Given a spending maximum α, a constrained-polarized schedule is a schedule x such
that xH

t = BH
t α for all t.

A constrained-polarized equilibrium (of game n) is an SPE σ∗ such that, for all
nodes h|t, x[t,∞)(h|t, σ

∗) is constrained-polarized.
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A constrained-polarized equilibrium schedule is a schedule x such that there
is a grid sequence and a sequence of constrained-polarized equilibria {σ(n)} across
the corresponding game sequence such that x(σ(n)) converges pointwise to x almost
everywhere as n → ∞.

In the absence of a spending maximum, the unique polarized (and unique limit)
equilibrium schedule features xH

t > BH
t αH ≥ BH

t α whenever BH
t > 0. A constrained-

polarized equilibrium schedule is therefore one in which H always chooses a spending
rate as close as possible to that she chooses in a polarized equilibrium schedule in
the absence of the constraint.

Define the “constrained open-loop game” to be the game in which players simulta-
neously choose individual schedules xi, subject to (19), and receive payoffs (15).

Proposition 7. Existence and uniqueness of constrained-polarized equi-
librium schedule given spending maximum

Given spending maximum α ∈ [αL, αH ],

a. There is a unique constrained-polarized equilibrium schedule x:

xH
t = BHαe(r−α)t,

xL
t =

{
0, t < t

∗
;(

BHe(r−α)t
∗
+BLert

∗)
αLe(r−αL)(t−t

∗
) −BHαe(r−α)t, t ≥ t

∗
,

where

t
∗ ≡ max

(
0, ln

(BH

BL

α− αL

αL

)/
α
)
. (21)

b. x is an equilibrium schedule under any grid sequence.

c. x is an equilibrium of the constrained open-loop game.

Proof. See Appendix A.7.

xH

xL

t

X t

Fig. 3a: Constrained-polarized equilibrium

schedule given spending maximum, b large

t
∗

xH

xL

t

X t

Fig. 3b: Constrained-polarized equilibrium

schedule given spending maximum, b small
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The spending maximum is binding for H, who spends at proportional rate α. L then
allocates BL patient-optimally, taking xH to be independent of his own spending.

If

b > 1− αL/α, (22)

then H’s fraction of the collective budget is small enough that at time zero her
spending rate, BHα, is less than the patient-optimal spending rate for the collective
budget, BαL. L thus begins spending immediately, and achieves the patient-optimal
collective schedule. If the inequality is reversed, H begins by overspending the
collective budget, from L’s perspective. L compensates by spending nothing until
some t

∗
> 0, and achieves the patient-optimal collective schedule subsequently.

A behavioral interpretation

Proposition 7 establishes that schedule x may obtain given that the players have
the preferences from the dynamic setup, given in (15), and strategically interact to
maximize them. Only the structure of the games, not the players’ preferences, have
been modified from Section 3.

Schedule x may also be given an alternate interpretation. Suppose that there are
no spending constraints, but that H maximizes∫ ∞

0

e−δH tu(xH
t )dt

instead of (15). That is, suppose that xH is a private good for H, rather than X
being a public good for both players. Then H chooses xH = xH , in the α = αH case,
regardless of σL, by Proposition 1. If L still maximizes (15), his best response is xL.
x (with α = αH) is thus the schedule that obtains if, in the terminology of Andreoni
(1990), H is a warm-glow funder and L is an altruistic funder.

Scenarios in which a less patient player is effectively warm-glow and a more
patient player is effectively altruistic may be relevant in practice not only because
some funders are in fact warm-glow, but also because a less patient funder may have
uncertainty about whether future funding from a patient funder will ever materialize.
As noted in the introduction, slow-spending philanthropists sometimes face this very
skepticism. The model of Section 3 is then one in whichH perfectly anticipates future
spending by L, and the model of this section explores the other end of the spectrum,
with H expecting no future spending by L at all—at least until he is wealthy enough
to implement his favorite allocation of the collective budget.

4.2 Spending minima / saving constraints

We will now explore the implications of a spending minimum α, in isolation and
then in combination with a spending maximum α ≥ α. Unlike spending maxima,
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spending minima are often imposed by law. In the United States, for instance,
charitable foundations must disburse at least 5% of their assets each year.

As with the spending maxima of the previous subsection, we will restrict our
attention to the α ∈ [αL, αH ] case. This is again because it is arguably both the most
economically interesting case and the most realistic, for roughly the same reasons.

As noted in Section 4.1, borrowing constraints can constrain philanthropic spend-
ing on some public good from growing more slowly than the economic growth rate
g, which in turn is the optimal spending growth rate from the perspective of a rep-
resentative household if the public good is not a luxury or a necessity. Disbursement
requirements are also sometimes motivated by a desire to prevent foundations from
growing quickly enough to accumulate outsize influence.7 On either grounds, we
might expect to find a legal spending minimum of r−g, so that philanthropic spend-
ing by all parties grows at a rate no higher than g. In particular, the standard rules
of thumb that the real rate of return on capital is 7% per year and the real eco-
nomic growth rate is 2% per year might be expected to motivate a 5% disbursement
minimum, as observed. And again, unless L and H are both unusually patient or
impatient, a minimum spending rate of r − g will lie in [αL, αH ].

Given a spending minimum α [and maximum α], a constrained-polarized sched-
ule is a schedule x such that xL

t = BL
t α [and xH

t = BH
t α] for all t. Constrained-

polarized equilibria and constrained-polarized equilibrium schedules are then defined
and motivated as in Section 4.1.

Proposition 8. Existence and uniqueness of constrained-polarized equi-
librium schedule given spending minimum

Given spending minimum α ∈ [αL, αH ],

a. There is a unique constrained-polarized equilibrium schedule x:

xH
t =

{
BLαL

(
e(α

H−αL)t∗+(r−αH)t − e(r−αL)t
)
, t < t∗;

0, t ≥ t∗,

xL
t = BLαe(r−α)t,

where t∗ uniquely satisfies

αH/b = αe(α
H−α)t∗ + (αH − α)e−αt∗

(or equals ∞ if b = 0, or if α = αH).

b. x is an equilibrium schedule under any grid sequence.

c. x is an equilibrium of the constrained open-loop game.

7In the extreme, see fears that trusts with plans to invest for too long before disbursing would
“shatter the nation’s financial structure”, re-“fashion [the] economy”, and ultimately “amount to
all the total value of the world” (O’Kane, 1961).
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Proof. See Appendix A.8.

t∗

xL

xH

t

X t

Fig. 4: Constrained-polarized equilibrium schedule given spending minimum

Proposition 9. Existence and uniqueness of constrained-polarized limit
equilibrium schedule given spending minimum and maximum

Given spending minimum α and spending maximum α with αL ≤ α ≤ α ≤ αH ,

a. There is a unique limit equilibrium schedule x:

xH
t = BHαe(r−α)t,

xL
t = BLαe(r−α)t.

b. x is an equilibrium schedule under any grid sequence.

c. x is an equilibrium of the constrained open-loop game.

Proof. See Appendix A.9.

xL
xH

t

X t

Fig. 5: Constrained-polarized equilibrium schedule given spending minimum and maximum
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4.3 The costs of constraints

Despite the symmetry of the spending minima and maxima we have introduced, and
the fact that polarized behavior in the unconstrained case gives the impatient player
a first-mover advantage, it is the patient player especially who can find a spending
constraint costly.

To express this result succinctly, fix r, γ, δH , and δL satisfying (9) and (18).
Then let

x[BH , BL, α, α]

denote the [constrained-]polarized equilibrium schedule given positive budgets BL

and BH and a (potentially vacuous) spending minimum α and maximum α satisfying

α ∈ 0 ∪ [αL, αH ], α ∈ [αL, αH ] ∪∞, α ≥ α. (23)

Finally, given (23), let wi denote i’s proportional willingness to pay to fully relax the
relevant spending constraint:

wH(b, α, α) ≡ w : UH(x[1− b, b, α, α]) = UH(x[(1− w)(1− b), b, α,∞]),

wL(b, α, α) ≡ w : UL(x[1− b, b, α, α]) = UL(x[1− b, (1− w)b, 0, α]).

The willingness to pay function wi(·) is given as a function of L’s budget share
b ∈ (0, 1), rather than of BH and BL, because holding b fixed, x∗, x, x, and x are
linear in B. Also, and relatedly, U(·) is homothetic: given any two schedules to which
a player assigns the same payoff, she also assigns the same payoffs to corresponding
schedules in which spending at each period is multiplied by a constant B > 0.
Without loss of generality, therefore, when computing proportional willingness to
pay, we can restrict our attention to the B = 1 case.

Proposition 10. Asymmetric costs of spending constraints

Given spending constraints α, α satisfying (23),

a. supb wH(b, α, α) < 1.

b. limb→0 wL(b, α, α) = 1 if α ≥ αL and α > αL.

Proof. See Appendix A.10.

In other words, when the more patient player controls a small proportion of the
funding in some domain, a spending minimum is approximately as costly to him as
a total expropriation, at least if spending is maximally polarized—even a spending
minimum of αL. This is true whether or not there is also a spending maximum
(as long as the spending maximum is not also αL). A spending maximum is not
approximately as costly to the less patient player as a total expropriation, however,
and this too is true whether or not there is also a spending minimum.
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Recall from Proposition 2 that no result analogous to Proposition 10b obtains in
the case of private good provision. This result highlights a welfare-relevant respect in
which time preference heterogeneity is especially important in the context of public
good provision.

An intuition for the asymmetry in the cost of a spending constraint is clearest
when the baseline schedule is constrained in both directions.

Removing a spending maximum does not change xL in the constrained-polarized
equilibrium schedule. When BH/B is small—i.e. when b ≈ 1—it simply concentrates
H’s spending around t = 0.

xL

xH

t

X t

Fig. 6a: Limit equilibrium schedule given binding

spending minimum and maximum, b → 1

→→→

t∗ → 0

xL
xH

t

X t

Fig. 6b: Limit equilibrium schedule given

binding spending minimum alone, b → 1

Under both constraints, when b ≈ 1, the utility that H’s budget offers her, above
the baseline UH(xL) provided by L’s spending, is roughly a discounted average of
e(r−δH)tu′(xL

t ) across t ≥ 0 per unit of BH . When the spending maximum is lifted,
the utility that H’s budget offers her above the baseline is roughly u′(xL

0 ) per unit
of BH . This is a bounded improvement.

With and without the spending minimum, the growth rate of xH equals r − α.
Given α > αL, is strictly less than the δL-optimal spending growth rate of r−αL. So
e(r−δL)tu′(xH

t ), the δ
L-discounted marginal utility of an increase in resources allocated

to t, grows unboundedly—indeed, exponentially—with t.
Under both constraints, regardless of b, L spreads his spending over time in such

a way that most of the present value of his budget is spent before some sufficiently
large T . This bounds the additional utility that BL offers L above the UL(xH)
baseline.
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xH

xL

t

X t

Fig. 7a: Limit equilibrium schedule given binding

spending minimum and maximum, b → 0

→→→

t
∗ → ∞

xH

xL

t

X t

Fig. 7b: Limit equilibrium schedule given

binding spending maximum alone, b → 0

When the spending minimum is lifted, however, the time t
∗
at which L begins spend-

ing grows without bound as b → 0. The utility that L’s budget offers him above the
baseline thus rises to infinity per unit of BL as b → 0.

Constraints and efficiency

Though efficiency is not the primary focus of this paper, we close this section by
noting a way in which constraints on public good spending rates, despite their po-
tentially large costs for one player, can bring about efficiency.

Recall from Proposition 6 that, in the absence of constraints, any efficient payoff
Pareto-superior to U(x∗) is an equilibrium payoff. There are also inefficient equilib-
rium schedules, however, including the polarized equilibrium schedule.

Under a one-sided constraint, the constrained-polarized equilibrium schedule is
typically also inefficient. This can be seen from the fact that it typically exhibits a
kink in collective spending which both players would prefer to smooth. But if the
constraint is tight enough that it implements one player’s favorite allocation of the
collective budget, the associated schedule is efficient.

Under a two-sided constraint, the constrained-polarized equilibrium schedule fea-
tures no kink. Instead, (given α > α), the collective proportional spending rate falls
smoothly from bα + (1− b)α to α as L gradually comes to possess a larger share of
the collective remaining budget. Under certain parameter conditions, this produces
an efficient schedule that is not either player’s most preferred schedule.

Proposition 11. Constraints and efficiency

Given spending constraints α, α satisfying (23), x[BH , BL, α, α] is efficient iff

i. α = αH ;

ii. α = αL;
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iii. α = 0, α ≥ αL, and b > 1− αL/αH ; or

iv. α = αL, α = αH , and γ = 1,

maximizing UH given (i), UL given (ii)-(iii), and (1− b)UH + bUL given (iv).

Proof. See Appendix A.11.

5 Delayed benefits

We have assumed so far that the flow utility the players enjoy at each time depends
only on collective spending at that time. This assumption most directly describes
the case in which the public good “X” is a perishable consumption good. Often,
however, public good expenditures generate benefits after the expenditures occur.
Spending on infrastructure, education, research, and environmental preservation is
all typically intended to generate a stream of benefits lasting far beyond the day
the money is spent. One may therefore wonder whether, in these domains, the basic
logic of intertemporal polarization explored in earlier sections is maintained. We will
now show that, under broad conditions, it is.

The notion that a more patient player would want to cut such expenditures when
a less patient player would want to increase them may be counterintuitive, since calls
to increase such expenditures in a political setting are typically made on the basis
of their future benefits. But in such a setting, the options at hand are typically (i)
to spend on a project with delayed benefits or (ii) to leave the required resources
untaxed, in which case at least some of them will be consumed in the short term.
By contrast, the setting studied here concerns private funders, such as foundations
or charitable trusts, all of whose budgets will be spent on public goods at some time.
The options at hand are therefore (i) to spend on a project today or (ii) to invest the
entirety of the required resources to a future date and fund more projects then. If
an education funder is indifferent between building one school today and two schools
in 20 years, it is perhaps not so counterintuitive to suppose that a more patient
education funder will prefer the latter.

To formalize this point simply, we will work in discrete time. LetX denote a discrete-
time collective schedule {Xt}t∈N. Suppose that each player’s utility at t equals ut(X):
an arbitrary time-specific function of collective spending Xs for each s ∈ N. Player
i has a sequence of time preference rates δit, with δHt > δLt ∀t, so that i’s payoff is

U i(X) =
∞∑
t=0

e−
∑t

q=1 δ
i
q ut(X). (24)

Note that we do not require ut to be increasing in each Xs: ut may be constant
or decreasing in Xs, locally or globally, for some or all s. In particular, we do not
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require ut to be constant in Xs for s < t: the plan to invest a unit of resources
until t may generate costs or benefits before t, e.g. if the invested resources support
environmentally destructive or socially impactful firms.

Because ut(·) is time-varying, this framework is flexible enough to incorporate the
effects of any funders outside the two whose spending constitutes X. For illustration,
suppose flow utility at t is the logarithm of spending at t by H, L, and a third party.
If the third party exogenously spends one unit at t, then ut(X) = log(Xt + 1). If
the third party is fully crowded out of spending at t as H and L increase their own
spending at t, then ut(X) = log(max(1, Xt)).

Like discount rates, we do not require that interest rates be constant or positive.
Instead, let R0 = 1, and let Rt > 0 denote the cumulative returns to investing from
0 to t.

{ut(·)} satisfies single crossing from X if the function-sequence is differentiable
at X and for each pair of times s < s,

∃t̃ ∈ {0, 1, ...,∞} :
∂ut(X)

∂Xs

≥
Rs

Rs

∂ut(X)

∂Xs

∀t < t̃, (25)

∂ut(X)

∂Xs

≤
Rs

Rs

∂ut(X)

∂Xs

∀t > t̃; and

∃t :
∂ut(X)

∂Xs

̸=
Rs

Rs

∂ut(X)

∂Xs

. (26)

That is, single crossing obtains from X if a marginal resource allocation to some time
s produces a stream of undiscounted net benefits that is not equal to the benefit-
stream produced by a marginal resource allocation to s > s, but lies weakly above
it, lies weakly below it, or crosses it once from above.

The proposition below establishes that single crossing is closely associated with
intertemporal polarization. First we will argue for the plausibility of the property
across familiar domains in which spending brings delayed benefits.

Suppose {ut(·)} and X are such that marginal education spending at s produces
a stream of benefits that begins at Cs per unit of expenditure and then grows ex-
ponentially at rate g.8 Then for any pair s < s, the stream of benefits to allocating
marginal resources for education expenditure at s lies weakly above that for s if
Cs ≤ Cs Rs/Rs, and the streams cross once (at s) if Cs > Cs Rs/Rs. In either case,
single-crossing from X obtains.

Or consider the case of avoiding a catastrophe severe enough to cause human
extinction. Because the effects of such a catastrophe would be permanent, the effort
to avoid one is sometimes used as the paradigmatic example of a domain in which the

8This would roughly be implied by the Lucas (1988) model of human capital accumulation, for
instance.
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patient desire more spending than the impatient. Suppose that, given X, the flow
utility associated with the existence of humanity at t is vt > 0 and the probability
of survival to t is pt, with p0 = 1 and p(·) non-increasing. Then (expected) utility at
t is ut(X) = ptvt. Suppose also that marginal spending at s lowers the probability
of an existential catastrophe at s by Cs per unit spent, given survival to s (resources
allocated to s having no effect absent survival to s). Then the stream of expected
benefits generated by allocating marginal resources to s is {RsCsptvt}t≥s. As in
the education case, for any pair s < s, the benefit-stream to allocating marginal
resources to s lies weakly above that for s if Cs ≤ Cs Rs/Rs, and the streams cross
once, at s, if Cs > Cs Rs/Rs.

As in earlier sections, suppose the players begin with budgets {Bi} > 0, with B ≡
BH +BL. A collective schedule X is feasible if

∑∞
t=0Xt/Rt ≤ B, and an individual

schedule for i, xi ≡ {xi
t}t∈N, is feasible if

∑∞
t=0 x

i
t/Rt ≤ Bi.

The generalized open-loop game is the game in which the players simultaneously
choose feasible individual schedules and earn payoffs (24).

Proposition 12. Polarization and single crossing

If {ut(·)} satisfies single crossing

a. from X, then given s < s,

∂UH(X)

∂Xs

≥
Rs

Rs

∂UH(X)

∂Xs

=⇒ ∂UL(X)

∂Xs

>
Rs

Rs

∂UL(X)

∂Xs

,

∂UL(X)

∂Xs

≤
Rs

Rs

∂UL(X)

∂Xs

=⇒ ∂UH(X)

∂Xs

<
Rs

Rs

∂UH(X)

∂Xs

.

b. from all feasible X, then in any equilibrium x of the generalized open-loop game,

∃s̃ : xH
s = 0 ∀s > s̃, xL

s = 0 ∀s < s̃.

Proof. See Appendix A.12.

It appears that an analysis of dynamic behavior in this generalized setting would
be very complex, and it will not be pursued here. Nevertheless, Proposition 12 and
the discussion above suggests that, in isolation, the fact that public good spending of-
ten produces delayed benefits does not typically alter the basic logic of intertemporal
polarization. Patience may motivate postponing one’s philanthropy.
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6 Conclusion

The economic implications of time preference heterogeneity have been extensively
explored in a variety of domains, including social discounting, optimal taxation,
and dynamic bargaining. They have to date, however, largely been overlooked in
literature on the private provision of public goods. The results presented here begin
to fill this gap, and illustrate the importance of building time preference heterogeneity
into models of dynamic public good provision going forward.

In dynamic public good provision contexts, time preference heterogeneity appears
both even more widespread and even more important than in other contexts.

For the most important dynamic public good games in practice, there is unusually
clear empirical and theoretical evidence that their players do not employ common
discounting, as noted in Section 1.1.

The results of this paper illustrate that time preference heterogeneity is not just
particularly widespread in dynamic public good provision settings but also partic-
ularly important. As a comparison between the cases of Section 2.1 and Section 3
illustrates, equilibrium behavior in dynamic public good games with versus without
time preference heterogeneity can differ dramatically: a player might spend at a pos-
itive rate at time zero under common discounting but, given a time preference rate
only slightly below that of his co-funder, spend nothing for a long while. And even
under arbitrarily small time preference differences, spending constraints can have ar-
bitrarily large proportional welfare implications for small patient philanthropists in a
large impatient world, in the sense explored in Section 4.3 (though not the reverse).
Spending constraints typically have no such extreme implications in the private good
context.

The pervasiveness and importance of time preference heterogeneity in public good
provision contexts has at least two broad classes of policy implications.

First, it affects the structure of self-enforcing agreements for the provision of pub-
lic goods among multiple parties who cannot contract, such as national governments.
Such agreements can be efficient, as shown in Section 3.3, at least in continuous time
and with perfect monitoring. If agreements are designed without accounting for the
parties’ different discount rates, however, they will generally not be efficient, and
may fail to be self-enforcing as intended. The United States’s 2017 withdrawal from
the Paris Agreement on climate change, for instance, coincided with an explicit im-
patient shift in Office of Management and Budget policies on social discounting, as
requested by the newly elected president.9 If Americans are simply less patient than
their international counterparts, this will in the long run affect democratically-set
discounting policy, and punishments (here taking the form of increases in collective

9See e.g. Li and Pizer (2021).
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emissions) sufficient to deter defections by many countries may be insufficient to
deter defections by Americans.

Second, an understanding of the importance of time preference heterogeneity
for public good provision might affect the policy conversation around disbursement
requirements for philanthropic foundations, trusts, and DAFs. Voters and policy-
makers might look more charitably on slow- or non-disbursing charitable investment
vehicles once a lack of disbursement is understood not as proof of a tax-avoidance
scheme but as, at least possibly, a logical consequence of patient philanthropic plan-
ning. Estimates of a patient philanthropist’s high ideal willingness to pay to avoid
disbursement requirements may also motivate patient philanthropists themselves to
fight disbursement requirements more vigorously.

The lessons emphasized here are demonstrated rigorously in the context in which
there is a single good and each player’s flow utility is an isoelastic function of total
flow spending on it. The robustness of the lessons is suggested by the result of Section
5 that intertemporal polarization, at least, is maintained when the framework is
extended to allow for much more general preferences.

These results and discussions however only begin to cover the space of possible
implications of time preference heterogeneity for public good provision. We have
attempted to isolate the implications of time preference heterogeneity by focusing
on a model with only two players and a single public good; common knowledge
of preferences and of the value of the good; perfect monitoring; and a risk-free
AK investment environment. Even in this highly restricted setting, the analysis
is incomplete without further work on equilibrium characterization and selection.
To quantify the benefits of coordination, for instance, it may be valuable to explore
equilibrium selection among efficient SPEs, perhaps using tools from the considerable
existing literature on dynamic bargaining under time preference heterogeneity.

More work, both theoretical and empirical, would also be necessary to understand
the implications of time preference heterogeneity in real-world public good provision
problems which do not conform to the restrictions listed above. For instance, gov-
ernments and philanthropists generally face a variety of public good domains, which
produce benefits on different time horizons. Time preference heterogeneity might
then be expected to generate polarization both across domains and across time,
with patient parties funding an ever larger share of (ever shorter-horizon) domains
as they grow to constitute ever larger proportions of the total philanthropic market.
Also, given the possibility of risky investments, since the range of projects covered
by each player-type will be endogenous to the players’ budget shares, a public good
funder’s own time preferences and those of other philanthropists presumably have
implications for the funder’s own financial risk-tolerance. Exploring the implications
of time preference heterogeneity across the dimensions of both time and domain
further would appear to be a valuable topic for future research.

Even the simple model explored here confronts a host of complexities, in part
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because many useful results from the literature on repeated games (like algorithms to
characterize the set of equilibrium payoffs) cannot be used. Extensions along the lines
above would doubtless face even more difficulties. Given the pervasive importance
of time preference heterogeneity to dynamic public good provision, however, such
efforts appear to be worthwhile.
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A Proofs

A.1 Proof of Proposition 1 and corresponding payoff

Proof of Proposition 1

Given a schedule x, let

yt ≡ e−rtxt

denote the density of resources allocated at time 0 for investment until, followed
by spending at, t. The schedule y of present-value spending rates will be called an
“allocation”, and yt a “flow allocation”. Let

v(yt) ≡ e−δtu(ertyt)

denote the discounted flow utility at t from flow allocation yt.
Because marginal utility in spending is always positive, y is optimal only if it

exhausts the budget.
A budget-exhausting allocation y maximizes utility iff, given y, the marginal flow

utility of allocating to each t equals some constant λ almost everywhere:

v′(yt) =
∂

∂yt

[
e−δt (e

rtyt)
1−γ − 1

1− γ

]
= λ ∀∀t, γ ̸= 1; (27)

=
∂

∂yt

[
e−δtln(ertyt)

]
= λ ∀∀t, γ = 1

(where “∀∀” means “for almost all”, i.e. for all but a set of Lebesgue measure zero).
If (27) fails, then there are two positive-measure sets of times T1, T2 such that
v′(yt) > v′(ys) for t ∈ T2, s ∈ T1 (in turn implying ys > 0 for s ∈ T1, since
v′(0) = ∞). y is thus not optimal: a small reallocation from T1 to T2 increases U . If
y does satisfy (27) almost everywhere, it is optimal, because U(·) is continuous and
strictly quasiconcave: U(ax̃+(1−a)˜̃x) > aU(x̃)+(1−a)U(˜̃x) for any pair of schedules
x̃, ˜̃x that differ on a positive-measure set of times and for which U(x̃) = U(˜̃x). If an
alternative feasible allocation ỹ would be superior to y, marginal reallocations from
y toward ỹ would also be superior, which (27) rules out.

https://www.whitehouse.gov/sites/whitehouse.gov/files/omb/circulars/A94/a094.pdf
https://www.whitehouse.gov/sites/whitehouse.gov/files/omb/circulars/A94/a094.pdf
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Taking the derivative and rearranging, we have

yt = λ− 1
γ e

r−rγ−δ
γ

t ∀∀t. (28)

Subjecting (28) to the budget constraint (3), we have∫ ∞

0

λ
−1
γ e

r−rγ−δ
γ

tdt = B. (29)

If δ > r(1− γ), we find

λ− 1
γ = B

rγ − r + δ

γ

(
= Bα

)
. (30)

Substituting (30) into (28), and recalling that xt = ertyt, we have

xt = Bαe(r−α)t ∀∀t. (31)

Since the only right-continuous schedule x that satisfies (31) is that which equals the
expression above for all t, this is the optimal schedule.

If δ ≤ r(1−γ), no λ satisfies (29), so no budget-exhausting y satisfies (27). There
is no optimal schedule.

Payoff to following the optimal private schedule

Given δ > r(1− γ), i.e. α > 0, the payoff to following schedule (31) equals

U =

∫ ∞

0

e−δtu
(
Bαe(r−α)t

)
dt,

which simplifies to

U =


B1−γ

1−γ
α−γ, γ ̸= 1;

δ ln(Bδ)+r−δ
δ2

, γ = 1.

(32)

A.2 Proof of Proposition 2

The payoff obtained given a loss of fraction w of the budget, without a spending
rate requirement, equals (32) with (1 − w)B in place of B. Denote the resulting
expression U(B,w).

To find the payoff obtained under the spending rate requirement, substitute (5)
with α̃ in place of α into (2) and integrate to get

Uδ(B, α̃) ≡


B1−γ

1−γ
α̃1−γ

α̃+δ−δ̃
, γ ̸= 1;

δ ln(Bδ̃)+r−δ̃
δ2

, γ = 1,

(33)
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where, given α̃,

δ̃ ≡ α̃γ − rγ + r (34)

is the time preference rate for which α̃ is the optimal spending rate. Note that the
integral is defined iff (7) holds.

Set Uδ(B, α̃) = U(B,w) and solve for w.

A.3 Proof of Proposition 3

Consider a schedule x such that there are positive-measure sets of times T1, T2 with
sup(T1) < inf(T2), x

L
t > 0 ∀t ∈ T1, and xH

t > 0 ∀t ∈ T2. We begin by showing that x
is not an equilibrium.

If e(r−δL)t(xH
t + xL

t )
−γ is not constant almost everywhere in T1, L prefers to real-

locate his spending within T1. Likewise, if e
(r−δH)t(xH

t +xL
t )

−γ is not constant almost
everywhere in T2, H prefers to reallocate her spending within T2. In either case, x
is not an equilibrium.

Suppose therefore that

e(r−δL)t(xH
t + xL

t )
−γ = λL ∀∀t ∈ T1, (35)

e(r−δH)t(xH
t + xL

t )
−γ = λH ∀∀t ∈ T2. (36)

If x is an equilibrium, we must have

e(r−δL)t(xH
t + xL

t )
−γ ≤ λL ∀∀t ∈ T2. (37)

Otherwise L prefers to marginally reallocate his spending from T1 to T2. Likewise,
we must have

e(r−δH)t(xH
t + xL

t )
−γ ≤ λH ∀∀t ∈ T1, (38)

or else H prefers to marginally reallocate her spending from T2 to T1. Multiplying
both sides of (37) by e(δ

L−δH)t and both sides of (38) by e(δ
H−δL)t, substituting for

the left-hand sides by (36) and (35), and rearranging, we have

e(δ
H−δL)t ≤ λL/λH ∀∀t ∈ T2,

e(δ
H−δL)t ≥ λL/λH ∀∀t ∈ T1.

Since δH > δL and T2 follows T1, these inequalities cannot simultaneously obtain.
This completes the proof that x is not an equilibrium.

It follows that, in any equilibrium, there is a time to such that H is the sole funder
∀∀t < to and L is the sole funder ∀∀t > to.
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As in Proposition 1, each player i does best to spend such that the value of
marginal allocations is equal across almost all times at which she spends. This
implies that if x is an equilibrium,

xH
t = ΛHe(r−αH)t ∀∀t < to, (39)

= 0 ∀∀t > to;

xL
t = 0 ∀∀t < to, (40)

= ΛLe(r−αL)t, ∀∀t > to,

for some constants ΛH , ΛL.
From the budget constraints∫ to

0

ΛHe−αH tdt = BH ;∫ ∞

to
ΛLe−αLtdt = BL,

we then have

ΛH = BHαH
(
1− e−αH to

)−1

; (41)

ΛL = BLαLe−αLto . (42)

An equilibrium collective schedule cannot exhibit a jump discontinuity at its to.
If collective spending rose discontinuously at to, L would prefer a reallocation from
just after to to just before. Likewise, if it fell discontinuously, H would prefer a
reallocation from just before to to just after. We therefore have

ΛHe(r−αH)to = ΛLe(r−αL)to

=⇒ to =
1

αH − αL
ln
(ΛH

ΛL

)
. (43)

Substituting (43) into (41)–(42) and simplifying, we get

ΛH = BHαH +BLαL; (44)

ΛL = BLαL
(
1 +

BHαH

BLαL

) αL

αH

. (45)

Substituting (44)–(45) into (39)–(40) and (43) produces final expressions for xH , xL,
and to.



44

We have shown that, if an equilibrium exists, it must take the form above. To
verify that the profile (xH , xL) above is in fact an equilibrium, observe that, by
construction, from (xH , xL), neither player prefers marginal reallocations across times
during which he spends, or from times during which he spends to times during which
he does not. Because U i(·) is strictly quasiconcave for both i, neither player prefers
a non-marginal alternative feasible x̃i, fixing x̃−i, either. xL and xH are mutual best
responses.

A.4 Proof of Proposition 4

Preliminaries

Let xL(xH) and yL(xH) denote L’s best-response individual schedule and allocation,
respectively, to H’s individual schedule xH . The strict quasiconcavity of U(·) guar-
antees that if a best response exists, it is unique (up to measure-zero deviations).
We will construct the unique form that an equilibrium (xH , xL(xH)) must take if one
exists and then show that the strategies are indeed mutual best responses.

Given xH , let

T L(xH) ≡ {t : xL
t (x

H) > 0}, T H(xH) ≡ {t : xH
t > 0}.

Note that the budget constraints∫
T L(xH)

yLt (x
H)dt ≤ BL,

∫
T H(xH)

yHt dt ≤ BH

imply that T L(xH) and T H(xH), and thus their intersection, are measurable. Let

B(xH) ≡
∫
T L(xH)

yLt (x
H) (≤ BH)

denote the budget that H allocates to T L(xH).
yL(xH) must set the δL-discounted marginal utility of flow allocations equal ∀∀t ∈

T L(xH). As in Proposition 1, this holds iff

xH
t + xL

t (x
H) = ΛL(xH)e(r−αL)t ∀∀t ∈ T L(xH), (46)

for the constant ΛL(xH) satisfies the budget constraint∫
T L(xH)

e−rt(xH
t + xL

t (x
H))dt = B(xH) +BL. (47)

The resulting {xH
t +xL

t (x
H)}t∈T L(xH) will implement the unique δL-optimal allocation

of B(xH) +BL across T L(xH).
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Let T ⊂ T L(xH) denote a set of times such that∫
T
e−rt(xH

t +XL
t (x

H))dt = B(xH).

Such T must exist, by the continuity of total resource allocation with respect to
time. If B(xH) > 0 any such T must have positive measure.

Suppose B(xH) > 0, and consider an x̃H such that

x̃H
t =


xH
t , t ̸∈ T L(xH);

xH
t + xL

t (x
H), t ∈ T ;

0, t ∈ T L(xH)\T .

L will then still be able to achieve a collective schedule of xH
t +xL

t (x
H), by adopting

individual schedule x̃L with

x̃L
t =

{
0, t ̸∈ T L(xH)\T ;

xH
t + xL

t (x
H), t ∈ T L(xH)\T .

(x̃H , x̃L) still implements the unique δL-optimal allocation of resources B(xH) + BL

across T L(xH). Furthermore, because x̃H
t = xH

t ∀t ̸∈ T L(xH), L still weakly prefers
marginal spending within T L(xH) to marginal spending outside T L(xH). Given x̃H ,
therefore, L does indeed best respond with x̃L; x̃L = xL(x̃H).

x̃H thus induces the same collective schedule as xH . However, B(x̃H) = 0. We
have found that, for any feasible xH , there is a feasible x̃H such that

B(x̃H) = 0 (48)

and H is indifferent between xH and x̃H given L’s best response.

Given a feasible xH satisfying (48), let

T̂ (xH) ≡ {t : xH
t > ΛL(xH)e(r−αH)t},

B̂(xH) ≡
∫
T̂ (xH)

yHt dt.

Observe by the reasoning of Proposition 1 that there is a (near-)unique and δH-
optimal feasible x̃H , under the condition T H(x̃H) = T H(xH), such that

x̃H
t =

{
0, t ̸∈ T H(xH);

max(ΛH(x̃H)e(r−αH)t,ΛL(x̃H)e(r−αL)t), t ∈ T H(xH),
(49)
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where ΛL(x̃H) = ΛL(xH) is given by (46)–(47) and

ΛH(x̃H) ≡


ΛH :

∫
T̂ (xH)

ΛHe−αH tdt = B̂(xH)

=⇒ B̂(xH)
/ ∫

T̂ (xH)
e−αH tdt, B̂(xH) > 0;

ΛL(x̃H), B̂(xH) = 0.

That is, H always does best to allocate δH-optimally across the periods during
which she spends, at least subject to the constraint that such a shift does not render
her spending at a time low enough that L responds by altering his own schedule.

Consider a feasible allocation yH (and corresponding xH) satisfying (48) and (49).
We must have

yHt =

{
ΛH(xH)e−αH t, t ∈ T H(xH) ∩ [0, q];

ΛL(xH)e−αLt, t ∈ T H(xH) ∩ [q,∞);
(50)

yLt (x
H) = ΛL(xH)e−αLt, t ∈ T L(xH),

where

q(xH) ≡ ln
(ΛL(xH)

ΛH(xH)

)/
(αL − αH)

denotes the time q at which ΛH(xH)e−αHq = ΛL(xH)e−αLq.
Define

Q(q;xH) ≡
∫
T L(xH)∩[0,q)

ΛL(xH)e−αLt, (51)

Q(q;xH) ≡
∫
T H(xH)∩[max(q,q),∞)

ΛL(xH)e−αLt.

Since Q(q;xH) weakly and continuously increases in q from zero to BL, and Q(q;xH)
weakly and continuously decreases in q from a nonnegative value to zero, there exists
a (not necessarily unique) q∗ such that

Q(q∗;xH) = Q(q∗;xH).

In equilibrium, q∗ is a time such that the amount (in present-value terms) that L
allocates δL-optimally before q∗ equals the amount that H allocates δL-optimally
after q∗.

Choosing some such q∗, now consider the allocation

ỹHt =


ΛL(xH)e−αLt, t ∈ T L(xH) ∩ [0, q∗);

0, t ∈ T H(xH) ∩ [max(q(xH), q∗),∞);

yHt , elsewhere.



47

Observe that ΛL(x̃H) = ΛL(xH) and ΛH(x̃H) = ΛH(xH), and thus that q(x̃H) =
q(xH).

It follows from (51) that L’s (near-)unique best response to a shift from yH to
ỹH is to shift his spending from T L(xH) ∩ [0, q∗) to T H(xH) ∩ [max(q(xH), q∗),∞),
leaving his spending elsewhere unchanged; this alone maintains (46). It likewise
follows from (51) that ỹH is affordable for H, and that it induces the same collective
allocation as yH . Finally, sup(T H(x̃H)) ≤ max(q(x̃H), q∗), so

T (x̃H) ≡ [inf(T L(x̃H)), sup(T H(x̃H))] is bounded and (52)

x̃H
t = ΛH(x̃H)e(r−αH)t ∀t ∈ T (x̃H),

with the second observation following from (49)–(50) and the fact that q(x̃H) =
q(xH). Note that inf(T L(xL(x̃H))) ≥ q∗, so T (x̃H) is of positive measure only if
max(T (x̃H)) = q(x̃H).

We have now shown that, for any feasible xH satisfying (48) and (49), there is a
feasible x̃H satisfying (48) and (52) such that H is indifferent between xH and x̃H

given L’s best response.

Without loss of generality, let us define xL(·) such that∫
T (xH)

e−rtxL
t (x

H)dt > 0 ∀xH : inf(T L(xH)) < sup(T H(xH)). (53)

That is, let us not say that L ever responds to xH by spending at a measure-zero set
of times before he begins to allocate positive resources.

If ∫
T (xH)

e−rtxH
t dt = 0, (54)

xH is a measure-zero deviation from an alternative strategy for H, x̃H with

x̃H
t =

{
xH
t , t < inf(T L(xH));

0, t ≥ inf(T L(xH)),
(55)

such that the schedule (x̃H , xL(x̃H)) is polarized in the sense that

∃t̃(x̃H) : xL
t (x̃

H) = 0 ∀t < t̃(x̃H), x̃H
t = 0 ∀t ≥ t̃(x̃H). (56)

Of course, xL(x̃H) = xL(xH) up to measure-zero deviations and, given these best
responses, H is indifferent between xH and x̃H .

The next step of the proof is to show that for any feasible xH satisfying (48) and
(52) but not (54), there is a feasible x̃H , which H in equilibrium strictly prefers to
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xH , satisfying all three conditions. It will then follow that, in equilibrium, xH must
be at most a zero-measure deviation from an x̃H satisfying (56). We will then be able
to determine the (near-)uniquely optimal xH in this class, and thus the equilibrium
as a whole.

From here we will proceed differently depending on the value of γ.

γ > 1 case

Consider a feasible allocation yH (and corresponding xH) satisfying (48) and (52)
but not (54). Recall that this implies that max(T (xH)) ≤ q(xH).

Define

Z(z;xH) ≡
∫
T L(xH)∩[0,z)

e−αLtdt, (57)

Z(z;xH) ≡
∫
T H(xH)∩[z,q(xH))

e−αLtdt. (58)

Since Z(z;xH) − Z(z;xH) strictly and continuously decreases in z from a positive
value at z = 0 to a negative (by (53)) value at z = q(xH), there is a unique z∗ ∈
(0, q(xH)) such that Z(z∗;xH) = Z(z∗;xH). Let

T (xH) ≡ T L(xH) ∩ [0, z∗), (59)

T (xH) ≡ T H(xH) ∩ [z∗, q(xH)).

It follows from the fact that sup(T H(xH)) ≤ q(xH) that yHt ≥ ΛL(xH)e−αLt ∀t ∈
T H(xH).

Choose ϵ > 0, and partition T (xH) into (not necessarily nonempty) elements

T j,ϵ(x
H) ≡ T (xH) ∩ [z∗ + j − ϵ, z∗ + j) (60)

for all j ∈ ϵN, where ϵN denotes {ϵ, 2ϵ, ...}. Also, define

tj(x
H) ≡ min

{
q :

∫
T (xH)∩[0,q)

e−αLtdt =

∫
T (xH)∩[z∗,z∗+j)

e−αLtdt
}
, (61)

T j,ϵ(x
H) ≡ T (xH) ∩ [tj−ϵ(x

H), tj(x
H)), (62)

j(t, ϵ;xH) ≡ j : t ∈ T j,ϵ(x
H) ∪ T j,ϵ(x

H). (63)

That is, j(t, ϵ;xH) is the element of ϵN such that t lies in the element of the parti-
tioned T (xH) whose supremum is j, or the corresponding element of the partitioned
T (xH).

Let

S(xH) ≡
{
s ∈ T (xH) : lim

ϵ→0

(
tj(s,ϵ;xH)(x

H)− tj(s,ϵ;xH)−ϵ(x
H)
)
> 0
}
. (64)



49

It follows from (61) that, for all s ∈ S(xH),

∃ϕ > 0 :

∫
T (xH)∩[0,ts(xH))

e−αLtdt =

∫
T (xH)∩[0,ts(xH)+ϕ)

e−αLtdt =

∫
T (xH)∩[z∗,s)

e−αLtdt.

(65)

Given s ∈ S(xH), let ϕs denote the supremum ϕ satisfying (65). Thus, for each
s ∈ S(xH), there is a maximal subinterval Φ(s) ≡ [ts(x

H), ϕs) of [0, z∗) such that
µ(T (xH)∩Φ(s)) = 0. Because any interval can be partitioned into at most countably
many subintervals, there are at most countably many such Φ. Furthermore, for each
Φ, we must have

µ
(
{s : Φ(s) = Φ}

)
= 0;

otherwise the integral on the right-hand side of (65) could not be equal for all such
s. Therefore µ(S(xH)) = 0.

It follows that, given any feasible xH satisfying (48) and (52), there is a corre-
sponding feasible x̃H with

x̃H
t =

{
xH
t , t ̸∈ S(xH);

0, t ∈ S(xH),

also satisfying (48) and (52), but for which we also have

S(x̃H) = ∅. (66)

Of course xL(x̃H) = xL(xH) almost everywhere, and H is indifferent between xH and
x̃H given L’s best responses.

Consider an allocation yH (and corresponding xH) satisfying (48), (52), and (66)
but not (54). Then, given a choice of interval-length ϵ, consider the allocation ỹH(ϵ)
(and corresponding x̃H(ϵ)) with

ỹHt (ϵ) =


yHt , t ̸∈ T (xH) ∪ T (xH);

ΛH(xH)e(α
L−αH)(z∗+j(t,ϵ;xH))−αL(t

j(t,ϵ;xH )
(xH)+ϵ), t ∈ T (xH);

0, t ∈ T (xH).

Note that x̃H(ϵ) satisfies (54) for all ϵ.
To demonstrate that ỹH(ϵ) is feasible, let us show that its allocation to each

T j,ϵ(x
H) is weakly (and indeed strictly) less than yH ’s allocation to the corresponding

T j,ϵ(x
H). From (61) and (62), we have∫

T j,ϵ(x
H)

e−αLtdt =

∫
T j,ϵ(xH)

e−αLtdt. (67)
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Observe that t < tj(x
H) ∀t ∈ T j,ϵ(x

H) and t ≥ z∗ + j − ϵ ∀t ∈ T j,ϵ(x
H). Also,

yHt ≥ ΛH(xH)e−αH(z∗+j) ∀t ∈ T j,ϵ(x
H).

Thus (67) gives ∫
T j,ϵ(x

H)

e−αLtj(x
H)dt ≤

∫
T j,ϵ(xH)

e−αL(z∗+j−ϵ)dt (68)

=⇒
∫
T j,ϵ(x

H)

ΛH(xH)e(α
L−αH)(z∗+j)−αL(tj(x

H)+ϵ)dt ≤
∫
T j,ϵ(xH)

ΛH(xH)e−αH(z∗+j)dt

<

∫
T j,ϵ(xH)

ΛH(xH)e−αH tdt. (69)

Summing across j ∈ ϵN, it follows that, since yH is feasible, ỹH(ϵ) is also feasible.

Now let us show that, for sufficiently small ϵ, H strictly prefers ỹH(ϵ) to yH given
L’s best responses.

First, for any ϵ, we can decompose the move from yH to ỹH(ϵ) into a sequence of
shifts from {yHt } to {ỹHt (ϵ)} for t ∈ T j,ϵ(x

H) ∪ T j,ϵ(x
H) for each j, with the original

allocation maintained elsewhere. That is, H can shift spending back from T (xH) to
T (xH) by shifting spending back from T j,ϵ(x

H) to T j,ϵ(x
H) for each j. Each shift

will be affordable, as shown by (69). Furthermore, from (61) and (62) we see that, in
equilibrium, L will (up to measure-zero deviations) respond to each shift by shifting
his own allocated funds from T j,ϵ(x

H) to T j,ϵ(x
H), leaving his spending elsewhere

unchanged; this alone maintains condition (46) for some ΛL. Finally, observe that the
shift must increase flow spending and thus utility throughout T j,ϵ(x

H) and decrease

it throughout T j,ϵ(x
H).

H’s net utility gain from shift j is thus bounded below by

1

1− γ

[∫
T j,ϵ(x

H)

e−δH tj(x
H)
((

ΛH(xH)e(α
L−αH)(z∗+j)−αL(tj(x

H)+ϵ)+rtj(x
H)
)1−γ

−
(
ΛL(xH)e(r−αL)tj−ϵ(x

H)
)1−γ

)
dt (70)

+

∫
T j,ϵ(xH)

e−δH(z∗+j−ϵ)
((

ΛL(xH)e(r−αL)(z∗+j)
)1−γ −

(
ΛH(xH)e(r−αH)(z∗+j−ϵ)

)1−γ
)
dt

]
.

From (67), the fact that t ≥ tj−ϵ(x
H) ∀t ∈ T j,ϵ(x

H), and the fact that t < z∗+ j ∀t ∈
T j,ϵ(x

H), we have ∫
T j,ϵ(xH)

e−αL(z∗+j)dt ≤
∫
T j,ϵ(x

H)

e−αLtj−ϵ(x
H)dt. (71)
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After rearranging (70) and making the substitution from (71), we see that H’s net
utility gain from shift j is further bounded below by

1

γ − 1

(
ΛL(xH)e(r−αL)tj−ϵ(x

H)
)1−γ

∫
T j,ϵ(xH)

e−αL(z∗+j)dt (72)

[(
1−

(ΛH(xH)

ΛL(xH)
e(α

L−αH)(z∗+j)+(r−αL)(tj(x
H)−tj−ϵ(x

H))−αLϵ
)1−γ)

eα
Ltj−ϵ(x

H)−δH tj(x
H)

−
(
1−

(ΛH(xH)

ΛL(xH)
e(α

L−αH)(z∗+j)−(r−αH)ϵ
)1−γ)

e(1−γ)(r−αL)(z∗+j−tj−ϵ(x
H))−δH(z∗+j−ϵ)+αL(z∗+j)

]
.

By (64) and (66),

lim
ϵ→0

tj(t,ϵ;xH)(x
H) = lim

ϵ→0
tj(t,ϵ;xH)−ϵ(x

H) = tt−z∗(x
H) ∀t ∈ T (xH). (73)

Also, by (60) and (63),

lim
ϵ→0

j(t, ϵ;xH) = t− z∗ ∀t ∈ T (xH). (74)

Furthermore, tj(t,ϵ;xH)(x
H) − tj(t,ϵ;xH)−ϵ(x

H) is uniformly bounded by z∗, and

j(t, ϵ;xH) − (t − z∗) by q(xH) − z∗, for t ∈ T (xH); so these two convergences are
uniform throughout T (xH). It follows that

lim
ϵ→0

[
1−

(ΛH(xH)

ΛL(xH)
e(α

L−αH)(z∗+j(t,ϵ;xH))+(r−αL)(t
j(t,ϵ;xH )

(xH)−t
j(t,ϵ;xH )−ϵ

(xH))−αLϵ
)1−γ]

(75)

= lim
ϵ→0

[
1−

(ΛH(xH)

ΛL(xH)
e(α

L−αH)(z∗+j(t,ϵ;xH))−(r−αH)ϵ
)1−γ]

(76)

=1−
(ΛH(xH)

ΛL(xH)
e(α

L−αH)t
)1−γ

(77)

for all t ∈ T (xH), and that the convergence of (75) and (76) to (77) is uniform
throughout T (xH).

By (48) and (52),

ΛH(xH)e−αH t > ΛL(xH)e−αLt ∀t ∈ [z∗, q(xH)), (78)

so ΛH(xH)
ΛL(xH)

e(α
L−αH)t > 1 for all such t. By our assumption of γ > 1, term (77) is

positive for all t ∈ T (xH).
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The net utility gain for H from the shift from yH to ỹH(ϵ)—the sum of (72)
across j ∈ ϵN—equals

1

γ − 1

∫
T (xH)

(
ΛL(xH)e(r−αL)t

j(t,ϵ;xH )−ϵ
(xH))1−γ

e−αL(z∗+j(t,ϵ;xH))

[(
1−

(ΛH(xH)

ΛL(xH)
e(α

L−αH)(z∗+j(t,ϵ;xH))+(r−αL)(t
j(t,ϵ;xH )

(xH)−t
j(t,ϵ;xH )−ϵ

(xH))−αLϵ
)1−γ)

eα
Lt

j(t,ϵ;xH )−ϵ
(xH)−δH t

j(t,ϵ;xH )
(xH)

−
(
1−

(ΛH(xH)

ΛL(xH)
e(α

L−αH)(z∗+j(t,ϵ;xH))−(r−αH)ϵ
)1−γ)

e(1−γ)(r−αL)(z∗+j(t,ϵ;xH)−t
j(t,ϵ;xH )−ϵ

(xH))−δH(z∗+j(t,ϵ;xH)−ϵ)+αL(z∗+j(t,ϵ;xH))
]
dt.

From (73) to (78), this converges, as ϵ → 0, to a value strictly greater than

ΛL(xH)1−γ

γ − 1

∫
T (xH)

(
1−

(ΛH(xH)

ΛL(xH)
e(α

L−αH)t
)1−γ)(

e(δ
L−δH)tt−z∗ (x

H) − e(δ
L−δH)t

)
dt,

(79)

which is positive. Therefore the total net utility gain is positive; H strictly prefers
ỹH(ϵ), for a small ϵ, to yH , given L’s best response. An equilibrium xH must therefore
be at most a measure-zero deviation of one satisfying the polarization condition (56).

We will now find the xH that, among those satisfying (56) for some t̃(xH), uniquely
maximizes H’s utility given L’s best response.

Because L invests his resources until t̃(xH) and subsequently allocates them δL-
optimally, we have

xL
t (x

H) =

{
0, t < t̃(xH);

ΛL(xH)e(r−αL)t, t ≥ t̃(xH),
(80)

where ΛL(xH) satisfies∫ ∞

t̃(xH)

ΛL(xH)e−αLtdt = BL =⇒ ΛL(xH) = BLαLeα
L t̃(xH). (81)

Likewise, fixing t̃, denote H’s most preferred xH satisfying (56) with t̃(xH) = t̃ by
xH [t̃]. xH [t̃] must spend H’s resources δH-optimally up to t̃. Spending δH-optimally
up to arbitrarily high t̃ will not be compatible with (52), and thus not with (56), in
equilibrium; L will eventually prefer spending to waiting until t̃. Nevertheless, we
will find the t̃ that would be optimal for H if H could spend δH-optimally up to t̃,
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instead of eventually having to switch to a δL-optimal schedule (as in (50)). We will
then see that spending δH-optimally up to the optimal threshold time, t∗, is indeed
compatible with (52) and thus (56) in equilibrium.

So we have

xH
t [t̃] =

{
ΛH [t̃]e(r−αH)t, t < t̃;

0, t ≥ t̃,
(82)

where ΛH [t̃] (= ΛH(xH [t̃])) satisfies∫ t̃

0

ΛH [t̃]e−αH tdt = BH =⇒ ΛH [t̃] =
BHαH

1− e−αH t̃
. (83)

(xH [t̃], xL(xH [t̃])) delivers H payoff

1

1− γ

[∫ t̃

0

e−δH t
((

BHαH
(
1− e−αH t̃

)−1
e(r−αH)t

)1−γ)
dt

+

∫ ∞

t̃

e−δH t
((

BLαLeα
L t̃e(r−αL)t

)1−γ)]
dt

=
1

1− γ

[
(BH)1−γ(αH)−γ

(
1− e−αH t̃

)γ
+

(BLαL)1−γ

δH + αL − δL
e−γαH t̃

]
.

From the first order condition in t̃, we find a unique maximum at

t̃ = t∗ ≡ ln
(BHαH

BLαL
η + 1

)/
αL. (84)

Substituting (84) into (83) and (81), we find that the δH-optimal allocation rate
approaching t∗, and the δL-optimal allocation rate at t∗, are respectively

ΛH [t∗]e−αH t∗ = BLαL/η, (85)

ΛL(xH [t∗])e−αLt∗ = BLαL.

Since η < 1, spending impatient-optimally up to t∗ is compatible with (52) in equi-
librium, as promised. xH∗ ≡ xH [t∗] is thus the unique equilibrium strategy for H
among those satisfying (56), and a near-unique equilibrium strategy for H overall.

The proof is completed under “last steps” below.

γ = 1 case

Follow the proof of the γ > 1 case up to (69). By the reasoning preceding (70), we
can decompose the spending shift from T (xH) to T (xH), which constitutes the shift
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from yH to ỹH(ϵ), into shifts from T j,ϵ(x
H) to T j,ϵ(x

H) for each j ∈ ϵN; and having
done so, H’s net utility loss from shift j is bounded above by∫

T j,ϵ(x
H)

e−δH tj,ϵ(x
H)
(
ln
(
ΛL(xH)e(r−δL)tj−ϵ,ϵ(x

H)
)

(86)

− ln
(
ΛH(xH)e(δ

L−δH)(z∗+j)−δL(tj,ϵ(x
H)+ϵ)+rtj,ϵ(x

H)
))

dt

+

∫
T j,ϵ(xH)

e−δL(z∗+j−ϵ)
(
ln
(
ΛH(xH)e(r−δH)(z∗+j−ϵ)

)
− ln

(
ΛL(xH)e(r−δL)(z∗+j)

))
dt.

After rearranging, and by (71), this implies that that H’s total net utility loss across
all j is bounded above by∫

T (xH)

e−δL(z∗+j(t,ϵ;xH))
[
eδ

Lt
j(t,ϵ;xH )−ϵ

(xH)−δH t
j(t,ϵ;xH )

(xH) (87)

(
ln
(ΛL(xH)

ΛH(xH)

)
+ r
(
tj(t,ϵ;xH)−ϵ(x

H)−tj(t,ϵ;xH)(x
H)
)
+ (δH − δL)(z∗ + j(t, ϵ;xH)) + δLϵ

)
−e(δ

L−δH)(z∗+j(t,ϵ;xH))−δHϵ
(
ln
(ΛL(xH)

ΛH(xH)

)
+ (δH − δL)(z∗ + j(t, ϵ;xH)) + (r − δH)ϵ

)]
dt.

By the uniform convergences of (73) and (74), (87) converges to zero as ϵ → 0. Thus,
for any ℓ > 0, ∃ϵ̄ > 0 such that∣∣∣UH

(
(xH , xL(xH))

)
− UH

(
(x̃H(ϵ), xL(x̃H(ϵ)))

)∣∣∣ < ℓ ∀ϵ < ϵ̄. (88)

Observe that, as ϵ → 0, x̃H(ϵ) converges uniformly throughout [0,∞) to a spend-
ing schedule we might denote x̃H(0), which satisfies (48), (52), (66), and (54), and
such that, by (88), H is indifferent between x̃H(0) and xH given L’s best response.

Consider the class of xH satisfying (48), (52), (66), and (54). By the reasoning of
(80)–(83), the (near-unique) optimal xH for H in this class, given L’s best response—
which we may denote xH∗—delivers H payoff∫ t̃

0

e−δH t ln
( BHδH

1− e−δH t̃
e(r−δH)t

)
dt+

∫ ∞

t̃

e−δH t ln
(
BLδLeδ

L t̃e(r−δL)t
)
dt

=
e−δH t̃

δH

(
ln(BLδL)− δL

δH
+ δH t̃+ 1

)
+

e−δH t̃ − 1

δH
ln
(1− e−δH t̃

BHδH

)
− 1

δH
+

r

(δH)2

for some t̃. From the first order condition in t̃, we find a unique maximum at

t̃ = t∗ ≡ ln
(
1 +

BHδH

BLδL
e

δL

δH
−1
)/

δH . (89)
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Substituting (89) into (83) and substituting both terms into (82), we obtain our
expression for xH∗.

The proof is completed under “last steps” below.

γ < 1 case

Pick up from the end of the “Preliminaries” section above.
Consider a feasible allocation yH (and corresponding xH) satisfying (48) and (52)

but not (54). Define

Ẑ(z;xH) ≡
∫
T H(xH)∩[0,z)

e−αLtdt,

Ẑ(z;xH) ≡
∫
T L(xH)∩[z,q(xH))

e−αLtdt.

Since Ẑ(z;xH) − Ẑ(z;xH) strictly and continuously decreases in z from a positive
value at z = 0 to a negative value at z = q(xH), there is a unique z∗ ∈ (0, q(xH))
such that Z(z∗;xH) = Z(z∗;xH). Let

T̂ (xH) ≡ T H(xH) ∩ [0, z∗),

T̂ (xH) ≡ T L(xH) ∩ [z∗, q(xH)).

It follows from (48) that yHt ≥ ΛL(xH)e−αLt ∀t ∈ T H(xH).

Choose ϵ > 0. Partition T̂ (xH) and define T̂ j,ϵ(x
H), t̂j(x

H), T̂ j,ϵ(x
H), ĵ(t, ϵ;xH),

and Ŝ(xH) analogously to (60)–(64).
By the reasoning up to (66), given any allocation yH satisfying (48) and (52),

there is a corresponding ỹH (and x̃H) also satisfying (48) and (52) but for which we
also have

Ŝ(x̃H) = ∅, (90)

such that H is indifferent between yH and ỹH given L’s best responses.
Consider a feasible allocation yH (and corresponding xH) satisfying (48), (52),

and (90) but not (54). Given a choice of interval-length ϵ, consider the allocation
ỹH(ϵ) (and corresponding x̃H(ϵ)) with

ỹHt (ϵ) =


yHt , t ̸∈ T̂ (xH) ∪ T̂ (xH);

0, t ∈ T̂ (xH);

ΛH(xH)eα
L (̂t

ĵ(t,ϵ;xH )−ϵ
(xH)−z∗−ĵ(t,ϵ;xH))−αH t

ĵ(t,ϵ;xH )
(xH), t ∈ T̂ (xH).

Note that x̃H(ϵ) satisfies (56) for all ϵ.
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To demonstrate that ỹH is feasible, let us show that its allocation to each T̂ j,ϵ(x
H)

is weakly (and indeed strictly) less than yH ’s allocation to the corresponding T̂ j,ϵ(x
H).

From the analogs to (61) and (62), we have the analog to (67). Observe that t ≥
t̂ĵ(t,ϵ;xH)−ϵ(x

H) ∀t ∈ T̂ j,ϵ(x
H) and t < z∗ + j ∀t ∈ T̂ j,ϵ(x

H). Also,

yHt ≥ ΛH(xH)e−αH t̂j(x
H) ∀t ∈ T̂ j,ϵ(x

H).

Thus ∫
T̂ j,ϵ(xH)

e−αL(z∗+j)dt ≤
∫
T̂ j,ϵ(x

H)

e−αL t̂j(x
H)dt

=⇒
∫
T̂ j,ϵ(xH)

ΛH(xH)eα
L (̂tj−ϵ(x

H)−z∗−j)−αH t̂j(x
H)dt ≤

∫
T̂ j,ϵ(x

H)

ΛH(xH)e−αH t̂j(x
H)dt

<

∫
T̂ j,ϵ(x

H)

ΛH(xH)e−αH tdt.

Summing across j ∈ ϵN, it follows that, since yH is feasible, ỹH is also feasible.
By calculations precisely analogous to those from (69) to (79)—here simply mov-

ing H’s spending forward from T̂ to T̂ , rather than backward from T to T—the total
net utility gain for H from the shift from yH to ỹH(ϵ) converges, as ϵ → 0, to a value
strictly greater than

(ΛL(xH))1−γ

1− γ

∫
T̂ (xH)

((ΛH(xH)

ΛL(xH)
e(α

L−αH)t
)1−γ

− 1
)(

e(δ
L−δH )̂tt−z∗ (x

H) − e(δ
L−δH)t

)
dt.

This is positive, like its analog (79): both the coefficient outside the integral and
the first factor in the integral have changed sign. Therefore the total net utility gain
is positive; H strictly prefers ỹH(ϵ), for sufficiently small ϵ, to yH given L’s best
responses.

We have shown that, if γ < 1, for any feasible allocation yH with xH satisfying
(48), (52), and (66), but not (54), there is a feasible ỹH (and corresponding x̃H)

which H strictly prefers, given L’s best responses, with threshold times t̃(x̃H), t̃(x̃H)
such that

xL
t (x

H) = 0 ∀t ∈ [t̃(x̃H), t̃(x̃H)), xH
t = 0 ∀t ̸∈ [t̃(x̃H), t̃(x̃H)). (91)

(In the case of the x̃H constructed just above, t̃(x̃H) = z∗ and t̃(x̃H) = q(xH).)

Consider a feasible allocation yH (and corresponding xH) satisfying (91) for some

t̃(xH), t̃(xH). Because L, in equilibrium, allocates his resources δL-optimally across
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[0, t̃(xH)) ∪ [t̃(xH),∞), we have

xL
t (x

H) =

{
0, t ∈ [t̃(xH), t̃(xH));

ΛL(xH)e(r−αL)t, t ∈ [0, t̃(xH)) ∪ [t̃(xH),∞),
(92)

up to measure-zero deviations, where ΛL(xH) satisfies

BL =

∫ t̃(xH)

0

ΛL(xH)e−αLtdt+

∫ ∞

t̃(xH)

ΛL(xH)e−αLtdt

=⇒ ΛL(xH) =
BLαL

1 + e−αL t̃(xL) − e−αL t̃(xL)
. (93)

Likewise, fixing t̃ and t̃, denoteH’s most preferred xH satisfying (92) with t̃(xH) =

t̃ and t̃(xH) = t̃ by xH [t̃, t̃]. xH [t̃, t̃] must allocate H’s resources δH-optimally across

[t̃, t̃). Spending δH-optimally for an arbitrarily long interval will not be compatible
with (52), and thus not with (91), in equilibrium; L will eventually prefer spending

during the interval. Nevertheless, we will find the t̃, t̃ that would be optimal for H if

H could spend δH-optimally across an arbitrary [t̃, t̃), instead of eventually having
to switch to a δL-optimal schedule (as in (50)). We will then see that the δH-optimal
schedule satisfying (91) is indeed compatible with (52) and thus (91) in equilibrium.

So we have

xH
t [t̃, t̃] =

{
ΛH [t̃, t̃]e(r−αH)t, t ∈ [t̃, t̃);

0, t ∈ [0, t̃) ∪ [t̃,∞),

where ΛH [t̃, t̃] satisfies∫ t̃

t̃

ΛH [t̃, t̃]e−αH tdt = BH =⇒ ΛH [t̃, t̃] =
BHαH

e−αH t̃ − e−αH t̃
. (94)

(xH [t̃, t̃], xL(xH [t̃, t̃])) delivers H payoff[∫ t̃

0

e−δH t
(
ΛL(xH [t̃, t̃])e(r−αL)t

)1−γ

dt+

∫ t̃

t̃

e−δH t
(
ΛH [t̃, t̃]e(r−αH)t

)1−γ

+

∫ ∞

t̃

e−δH t
(
ΛL(xH [t̃, t̃])e(r−αL)t

)1−γ

dt

]
1

1− γ
.

Rearranging (94) yields

t̃ = − ln
(
e−αH t̃ − BHαH

ΛH

)/
αH . (95)
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Substitute (93) for ΛL(xH [t̃, t̃]) and then (95) for t̃, so as to reframe H’s optimization

problem as being over choices of t̃ and ΛH (with t̃ endogenous) instead of t̃ and t̃
(with ΛH endogenous). Integrating and simplifying yields

[(
BLαL

1 +
(
e−αH t̃ − BHαH

ΛH

) αL

αH − e−αL t̃

)1−γ 1 +
(
e−αH t̃ − BHαH

ΛH

)αL+δH−δL

αH − e−(αL+δH−δL)t̃

αL + δH − δL

+ (ΛH)−γBH

]
1

1− γ
. (96)

Differentiating with respect to t̃ (and then re-introducing ΛL and t̃ in places, for
clarity) gives

− 1

αL + δH − δL
(ΛL)2−γ

BLαL

(
1 + e−(αL+δH−δL)t̃ − e−(αL+δH−δL)t̃

)
+

(ΛL)1−γ

1− γ

(
e−(αL+δH−δL)t̃ −

(
e−αH t̃ − BHαH

ΛH

)αH−αL

αH (γ−1)

e−αH t̃
)
.

The first of these two added expressions is negative. The second is also negative, as
can be seen from the fact that it is zero when the BH term explicitly represented
equals zero, and decreases as this term increases.

Thus, for any feasible xH satisfying (48), (52), (66), and (91) but not

t̃(xH) = 0,

there is a strictly preferred feasible x̃H (with, incidentally, ΛH(x̃H) = ΛH(xH)) sat-
isfying all five conditions.

H’s favorite strategy in this class is derived for all γ ̸= 1 in (80)–(85). Denote it

by xH∗, as done there, with t∗ ≡ t̃(xH∗) in the γ < 1 case.

Last steps

Letting xL∗ ≡ xL(xH∗) and

M ≡ 1 +
BHαH

BLαL
η,

it follows from (80)–(83) and (84) in the γ ̸= 1 cases, and (89) in the γ = 1 case,
that

xH∗
t =

{
BHαH M

M−1
e(r−αH)t, t < t∗;

0, t ≥ t∗
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and

xL∗
t =

{
0, t < t∗;

BLαLM
αL

αH e(r−αL)t, t ≥ t∗

for all γ > 0, where

t∗ ≡ ln(M)/αH .

Given L’s strategy xL(·) (or any measure-zero deviation from it), which is L’s
unique optimal strategy, H strictly prefers xH∗ to any alternative spending schedule
xH(0) that is a positive-measure deviation from xH∗ (a “PMD”). This follows from
the constructive derivation of xH∗, as summarized:

• For any PMD xH(0), we can construct a PMD xH(1) satisfying (48) such that
xH(1) ∼H xH(0).

• For any PMD xH(1) satisfying (48):

– If xH(1) does not satisfy (49) almost everywhere, we can construct an
xH(1′) satisfying (48) and (49) such that xH(1′) ≻H xH(1). xH∗ ≻H xH(1′),
by the full derivation above, so xH∗ ≻H xH(1) ∼H xH(0).

– If xH(1) does satisfy (49) almost everywhere, we can construct a PMD
xH(2) satisfying (48) and (49) such that xH(2) ∼H xH(1).

• For any PMD xH(2) satisfying (48) and (49), we can construct a PMD XH(3)

satisfying (48) and (52) such that xH(3) ∼H xH(2).

• For any PMD xH(3) satisfying (48) and (52), we can construct a PMD xH(4)

satisfying (48), (52), and (66) such that xH(4) ∼H xH(3).

• For any PMD xH(4) satisfying (48), (52), and (66), we can construct an xH(5)

satisfying (48), (52), (66), and (56) (γ ≥ 1) or (91) (γ < 1) such that xH(5) ≿H

xH(4) and xH(5) ̸= xH∗.

• H strictly prefers xH∗ to all other spending schedules satisfying (48), (52), (66),
and (56) (γ ≥ 1) or (91) (γ < 1). So xH∗ ≻H xH(5) ≿H xH(0).

This completes the result.

A.5 Proof of Proposition 5

Open-loop and Stackelberg schedules

Before beginning, it will be useful to introduce some notation regarding “open-loop”
and “Stackelberg” schedules in general, and familiarize ourselves with some of their
properties.
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Open-loop schedules

Given a nonempty interval [t, t) and a pair of budgets BH , BL to be allocated across
it at least one of which is positive, let xo[t, t, BL, BH ]—suppressing some or all of
these arguments when clear—denote the (potentially truncated) schedule on which
BH is allocated δH-optimally across [t, to) and BL is allocated δL-optimally across
[to, T ), where to (or to[t, t, BL, BH ], etc.) is the point in [t, t] that uniquely renders
collective spending continuous at to. Call this schedule the “open-loop” schedule,
and call to its “regime-change point”.

xH(o)
s =

{
BHαH

1−e−αH (to−t)
e(r−αH)(s−t), s ∈ [t, to);

0 s ∈ [to, t),
(97)

xL(o)
s =

{
0, s ∈ [t, to);

BLαL

e−αL(to−t)−e−αL(t−t)
e(r−αL)(s−t), s ∈ [to, t).

These formulas for xo, and a proof that it is the unique equilibrium schedule across its
interval when the schedule from t onward depends only on {Bi

t
}, follow immediately

from (17) and the proof of Proposition 3 (Appendix A.3).
to[BH , BL] is C1 in its arguments, by the implicit function theorem and the fact

that to uniquely satisfies

lim
s→to−

xH(o)
s − x

L(o)
to = 0,

whose left-hand side is C1 in to and {Bi}. Furthermore, since the first term of this
difference increases in BH and decreases in to and the second increases in BL but
decreases in to, to[BH , BL] is increasing (decreasing) in BH (BL), as is intuitive.

It follows that, for all s ∈ [t, t), the open-loop collective spending rateXo
s [B

H , BL]
strictly increases in Bi for both i. Since from (97) Xo

s is C1 in to and in {Bi}, and
since we found that to is itself C1 in {Bi}, Xo

s is C1 in {Bi} with respect to its total
derivatives (i.e. accounting for the effects of changes in Bi on to). So, for each i,
U i(xo[Bi, B−i]) is C1 in Bi and B−i.

Stackelberg schedules

Given a nonempty interval [t, T ) and a pair of budgets BH , BL to be allocated across
it at least one of which is positive, call a truncated schedule across the interval IC-po-
larized if there is a “regime-change point” t̃ ∈ [t, T ] such that H is the only spender
across [t, t̃) and L allocates BL δL-optimally across [t̃, T ). We will use T rather than t
to denote the upper end of the interval because we will only consider intervals ending
at the end of the game. The “IC” stands for “incentive-compatible”, and refers to
the fact that if H exhausts her budget at t̃ and L is restricted from spending before
t̃, L can have no incentive to do anything other than allocate BL

t̃
δL-optimally across

[t̃, T ).
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Call H’s favorite feasible IC-polarized schedule across the interval the “Stack-
elberg schedule”. Denote it by x∗[t, T, BH , BL], and its regime-change point by
t∗[t, T, BH , BL]. As with xo and to, we will suppress some or all of these arguments
when clear. We will now show that for any t, T > t, BH > 0, and BL > 0,
x∗[t, T, BH , BL] exists and is unique; existence and uniqueness when one budget or
both is zero is trivial. We will then note some of its properties.

(The Stackelberg schedule gets its name from the fact that, as we will later see,
x∗[0,∞, BH , BL] is the Stackelberg schedule found in Proposition 4. We will not
consider whether, on a finite horizon, x∗ is the unique equilibrium schedule of a
finite-horizon transformation of the Stackelberg game.)

Let t̃ denote a candidate regime-change point.
By the logic of the proof of Proposition 1, the δL-optimal allocation of BL

t across
[t̃, T ) equals

xL
s =

BL
t α

L

e−αL(t̃−t) − e−αL(T−t)
e(r−αL)(s−t), s ∈ [t̃, T ). (98)

Likewise, the δH-optimal allocation of BH
t across [t, t̃)—which, if t∗ = t̃, must of

course be the allocation adopted under x∗—equals

xH
t =

BH
t αH

1− e−αH(t̃−t)
e(r−αH)(s−t), s ∈ [t, t̃). (99)

Given that L spends nothing until t̃ and then adopts (98), and that H adopts (99),
H’s favorite location for t̃ is that which maximizes δH-discounted utility:

t∗ = argmax
t̃

[∫ t̃

t

e−δH(s−t)u
( BH

t αH

1− e−αH(t̃−t)
e(r−αH)(s−t)

)
ds (100)

+

∫ T

t̃

e−δH(s−t)u
( BL

t α
L

e−αL(t̃−t) − e−αL(T−t)
e(r−αL)(s−t)

)
ds

]
.

We will not find a closed-form expression for t∗, but we will show that it exists and
is unique.
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Integrating (100) yields

1

1− γ

[
1

αH

(
1− e−αH(t̃−t)

)γ(
BH

t αH
)1−γ

(101)

+
1

δH + αL − δL
e−γαH(t̃−t)

(
1− e(δ

L−δH−αL)(T−t̃)
)( BL

t α
L

1− e−αL(T−t̃)

)1−γ
]
, γ ̸= 1;

1

δH

[(
ln
( BH

t δH

1− e−δH(t̃−t)

)
+

r

δH
− 1

)(
1− e−δH(t̃−t)

)
+

(
ln
( BL

t α
L

e−δL(t̃−t) − e−δL(T−t)

)
+ (r − δL)

( 1

δH
− t
))(

e−δH(t̃−t) − e−δH(T−t)
)

+ (δH − δL)e−δH(t̃−t)t̃− (r − δL)e−δH(T−t)T

]
, γ = 1.

Differentiating with respect to t̃ then yields(
BH

t αH
)1−γ γ

1− γ

(
1− e−αH(t̃−t)

)γ−1
e−αH(t̃−t) (102)

+
(
BL

t α
L
)1−γ(

1− e−αL(T−t̃)
)γ−2

e−γαH(t̃−t)(
1

1− γ

(
e−αL(T−t̃) − 1

)
+

αL

δH + αL − δL

(
1− e(δ

L−δH−αL)(T−t̃)
))

, γ ̸= 1;

e−δH(t̃−t)

(
ln
( BH

t δH

1− e−δH(t̃−t)

)
− ln

( BL
t δ

L

1− e−δL(T−t̃)

)
+

δL

1− e−δL(T−t̃)

1− e−δH(T−t̃)

δH

)
, γ = 1,

which is continuous in t̃ and approaches a positive value as t̃ → t+ and a negative
value as t̃ → T−. This guarantees at least one interior solution. Though the second
derivative (i.e. the derivative of (102)) is not always negative, it can be proven as
follows that a unique t̃ = t∗ sets (102) equal to zero.

Rearranging (102) yields

A○t̃

(
B○t̃ C○t̃ + (1− B○t̃) D○t̃ − 1

)
, (103)
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where

A○t̃ ≡
BH

t αH

eαH(t̃−t) − 1

(
BH

t αH

1− e−αH(t̃−t)

)−γ

,

B○t̃ ≡
BL

t α
L
/(

1− e−αL(T−t̃)
)

BH
t αH

/(
eαH(t̃−t) − 1

) ,
C○t̃ ≡

(
BL

t

)−γ(
αL
)1−γ 1− e(δ

L−αL−δH)(T−t̃)

δH + αL − δL

(
1− e−αL(T−t̃)

)γ−1

·

(
BH

t αH

eαH(t̃−t) − 1

)γ

,

D○t̃ ≡
1

1− γ

(
BH

t αH

eα
H (t̃−t)−1

)1−γ

−
(

BL
t αL

1−e−αL(T−t̃)

)1−γ

BH
t αH

eα
H (t̃−t)−1

− BL
t αL

1−e−αL(T−t̃)

·

(
BH

t αH

eαH(t̃−t) − 1

)γ

, γ ̸= 1;

ln
(

BH
t δH

eδ
H (t̃−t)−1

)
− ln

(
BL

t δL

1−e−δL(T−t̃)

)
BH

t δH

eδ
H (t̃−t)−1

− BL
t δL

1−e−δL(T−t̃)

· BH
t δH

eδH(t̃−t) − 1
, γ = 1.

A○t̃ is positive for all t̃ > t. To find t̃ that set (103) equal to zero, therefore, we need
only focus on the expression within the outer parentheses.

We will first show that (103) is negative if B○t̃ ≥ 1. This amounts to the intuitive
observation that, if H has set t̃ so high that spending weakly jumps up at t̃, because
her resources from t to t̃ are spread so thinly and L’s resources from t̃ to T are so
concentrated, then H does not want to raise t̃ further.

When B○t̃ ≥ 1, D○t̃ (or its limit in the B○t̃ = 1 case) is weakly less than 1. This
can be seen from the facts that u(·) is convex, that the first term of D○t̃ is the slope
of the line segment connecting the points(

BH
t αH

eαH(t̃−t) − 1
, u

(
BH

t αH

eαH(t̃−t) − 1

))
,

(
BL

t α
L

1− e−αL(T−t̃)
, u

(
BL

t α
L

1− e−αL(T−t̃)

))
(104)

(or the slope at that point when they are equal), and the second term of D○t̃ divides
the first by the derivative at the lower of the two points. When B○t̃ ≥ 1, (103) is
thus weakly less than

A○t̃ B○t̃

(
C○t̃ − D○t̃

)
.

But

D○t̃ >

(
BL

t α
L

1− e−αL(T−t̃)

)−γ(
BH

t αH

eαH(t̃−t) − 1

)γ

= C○t̃

αL + δH − δL

αL

1− e−αL(T−t̃)

1− e−(αL+δH−δL)(T−t̃)
> C○t̃.
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So (103) is negative.
Since B○t̃ is strictly increasing in t̃ from 0 at t̃ = t to ∞ at t̃ = T , there is a

unique t̃ such that B○t̃
= 1, and any t̃ setting (103) equal to 0 must be less than t̃.

Denote some such t̃ by t∗. We will now show that it is unique in (t, t̃).
We will do this by showing that, if B○t∗ C○t∗ + (1− B○t∗) D○t∗ = 1, this expression

is strictly lower for t̃ ∈ (t∗, t̃). This will prove that the t̃ at which this sum equals 1,
and thus at which (103) equals 0, is unique.

Fixing t∗ ∈ (t, t̃) at which (103)=0, choose t̃ ∈ (t∗, t̃).

B○t∗ C○t∗ + (1− B○t∗) D○t∗ − B○t̃ C○t̃ − (1− B○t̃) D○t̃

= B○t̃

(
C○t∗ − C○t̃

)
+
(
D○t∗ − C○t∗

)(
B○t̃ − B○t∗

)
+
(
1− B○t̃

)(
D○t∗ − D○t̃

)
. (105)

We will show that each of these terms is positive.

B○t̃ and 1 − B○t̃ are positive for all t̃ ∈ (t, t̃), by definition of t̃. Because B○t̃

increases in t̃, B○t̃ − B○t∗ is also positive.
Putting aside the positive constant (BH

t αH)γ(BL
t )

−γ(αL)1−γ/(δH +αL − δL), C○t̃

can be split into three positive terms each of which decreases in t̃:

1− e(δ
L−αL−δH)(T−t̃)

1− e−αL(T−t̃)
·
(
1− e−αL(T−t̃)

)γ ·
(
eα

H(t̃−t) − 1
)−γ

.

C○t∗ − C○t̃ is thus positive.

To see that D○t∗ − C○t∗ is positive, observe first that, for t∗ < t̃, D○t∗ > 1. Its first
term is the slope of the line segment connecting points (104) on the graph of u(·)
and the second divides it by the derivative of u(·) at what is, given t∗ < t̃ and thus

B○t∗ < 1, the higher of the two points. Setting (103)=0 and rearranging, we then
have

B○t∗ C○t∗ + (1− B○t∗) D○t∗ = 1 (106)

=⇒ C○t∗ = D○t∗ −
D○t∗ − 1

B○t∗

< D○t∗ .

To see that D○t∗ − D○t̃ is positive, recall once again that D○t̃ is the ratio between
the slope of the line segment connecting points (104) and the derivative at the higher
point. Labeling the points (p1, u(p1)) and (p2, u(p2)) respectively, if both p1 and p2
were multiplied by some m < 1, both the slope of the line segment and the derivative
at the higher point would be multiplied by m−γ, and the ratio would be unchanged.
In the move from D○t∗ to D○t̃, however, because

∂

∂t̃

BH
t αH

eαH(t̃−t) − 1
< 0 but

∂

∂t̃

BL
t α

L

1− e−αL(T−t̃)
> 0, (107)



65

p1 is indeed multiplied by some m < 1 and the derivative at the higher point multi-
plied by m−γ, but p2 is multiplied by m > 1 > m. The slope of the line segment is
multiplied by less than m−γ, so the ratio falls.

We have now found that H’s favorite feasible IC-polarized schedule x∗ is unique.
We have also found that B○t∗ > 1. That is, if H allocates BH

t δH-optimally across
[t, t∗) and L allocates BL

t δL-optimally across [t∗, T ), then collective spending weakly
falls at t∗. This establishes that t∗ < to.

Precisely as with to in the case of the open-loop schedule, we can use the implicit
function theorem to establish that t∗[BH , BL] is C1 in both arguments, increasing in
BH and decreasing in BL. Increases to BH increase X∗

s [B
H , BL] for all s ∈ [t, T ), as

with Xo[·], though this is no longer obvious: it is proven in the “Final point: Unique
equilibrium schedule given placement of first announcement” section below. Now,
however, increases to BL do not necessarily do so.

Overview

First, we will show that the unique equilibrium schedule of the game with finite
horizon T resembles the Stackelberg schedule of Proposition 4, x∗, but on a finite
horizon. We will also show that this T -horizon schedule converges pointwise almost
everywhere to x∗ as T → ∞. This will nearly prove part (a), as it will prove that if
x∗ is an equilibrium schedule, it is the unique limit equilibrium schedule.

Second, we will prove that for any polarized equilibrium σ∗ of the infinite-horizon
game, x(σ∗) = x∗. This will nearly prove part (b), as it will prove that if a polarized
equilibrium schedule exists, it is unique and equals x∗.

Finally, we will show that a polarized equilibrium (of the infinite-horizon game)
exists. This will conclude the proofs of (a) and (b).

The proof of the unique equilibrium schedule of the game with finite horizon T
proceeds by backward induction. Let τ ≡ max{G(n)∩ [0, T )} denote the highest grid
point in T -horizon game n. We will therefore begin by finding the unique equilibrium
schedule of each subgame beginning at a node h|τ .

If Bi(h|τ ) = 0 for either i, the subgame equilibrium schedule is trivial: any player
−i with a positive budget allocates it δ−i-optimally from τ to T . Announcements
are irrelevant.

If Bi(h|τ ) > 0 for both i, the proof of the unique subgame equilibrium schedule
following h|τ will itself proceed by backward induction. We will find equilibrium
schedules

1. after the second announced node, if any;

2. after the second announcement has been made, if any;
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3. after the first announced node (i.e. we will find when the second announcement
may occur in equilibrium), if any;

4. after the first announcement has been made, if any; and then

5. from τ before any announcements have been made (i.e. we will find when the
first announcement may occur in equilibrium).

Let σ∗ be an equilibrium.

Final period

Unique equilibrium schedule after second announced node

The schedule implemented by σ∗ following the second announcement after τ follows
immediately from (17) and the proof of Proposition 3 (Appendix A.3). Given a
type 5 node h|t, x(h|t, σ

∗) allocates BH(h|t) δH-optimally across [t, to) and BL(h|t)
δL-optimally across [to, T ), where the “regime-change point” to ∈ [t, T ] uniquely
renders collective spending continuous at to.

Equilibrium schedules given placement of second announcement

Given a type 4 node h|t, let ξ ≡ ξ̂(h|t) ∈ (t, T ) denote the time of the subsequent
node, and let to ∈ [t, T ] denote the regime-change point of xo, the open-loop schedule
of {Bi

t} across [t, T ).
If Bi(h|t) = 0 for either i, the unique equilibrium schedule across [t, T ) is trivial,

with any player −i with a positive budget allocating it δ−i-optimally across this
interval. We will therefore assume until the end of this subsection of the proof that
Bi(h|t) > 0 for both i: i.e. that to ∈ (t, T ).

We will now show that, for each possible value of ξ, there is an equilibrium
schedule following h|t. We will then show that the equilibrium schedule we have
found is unique.

If to ≤ ξ, xo is an equilibrium schedule.
If L deviates from implementing xo, his deviation has no impact on H’s spending

at any time, because xH(o) spends down BH
t by ξ. By definition, xL(o) is L’s unique

best response to xH(o).
If H deviates in a way that maintains BH

ξ = 0, her deviation likewise has no

impact on L’s spending at any time, so must lower her payoff, because xH(o) is
her unique best response to xL(o). If she deviates such that BH

ξ > 0, she must
in equilibrium increase spending across [ξ, T ), because she induces the open-loop
schedule following ξ with a higher initial value of BH (positive instead of zero).
Because the δH-discounted marginal utility to any allocation in this interval (from
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Xo) is strictly lower than that to an allocation in [t, to), and u(·) is convex, any
deviation yielding BH

ξ > 0 thus also lowers her payoff.

If to > ξ, let x̃ denote a schedule that maximizes UH subject to the conditions that

a) H spends some budget ≤ BH
t δH-optimally across [t, ξ), and is the only spender

across this interval and

b) the schedule across [ξ, T ) is the open-loop schedule across this interval given
initial budgets BH

ξ , BL
ξ = BL

t e
r(ξ−t), i.e. xo[ξ, T,BH

ξ , BL
ξ ].

To prove that such a schedule exists, let x̃(BH
ξ ) denote the unique x̃ compatible with

(a), (b), and a given value of BH
ξ . Since UH is continuous in BH

ξ and the range of

feasible values of BH
ξ is [0, BH

t er(ξ−t)], which is compact, there is a UH-maximizing
x̃, by the extreme value theorem. Also, x̃ must satisfy

u′(x̃H
t ) ≥ e(r−δH)(ξ−t)

∂UH(xo[ξ, T,BH
ξ , BL

ξ ])

∂BH
ξ

, (108)

with equality if BH
ξ > 0, or else H could increase her payoff from the x̃ baseline,

while maintaining (a) and (b), by marginally shifting resources across ξ.
x̃ falls discontinuously at ξ. If it does not and BH

ξ = 0, so that L begins spending
immediately, this violates the stipulation that to > ξ. If it does and BH

ξ > 0, then
(108) cannot hold. Given BH

ξ > 0, H must strictly prefer marginal allocations at ξ
to marginal allocations just before ξ. This is because, if H reduces spending before
ξ and thus increases BH

ξ , she cannot allocate these resources to periods just after ξ
without affecting to[ξ, T, ...]. Rather, by increasing BH

ξ , she delays the regime-change
point of the open-loop schedule beginning at ξ, increasing spending not only before
to but also at times after to at which the δH-discounted marginal utility of resource
allocation is lower.

x̃ is an equilibrium schedule. Any deviation at h|t byH that leaves BH
ξ unchanged

would simply consist of a strictly dispreferred allocation of her resources before ξ, and
would have no effect on L’s schedule. Any deviation by H that changes BH

ξ , while
maintaining δH-optimal spending before ξ (and of course the open-loop schedule after
ξ), would leave (108) (with equality if BH

ξ > 0) unsatisfied, and so would offer H an
opportunity to increase her payoff by shifting resources across ξ in one direction or
the other.

Any deviation by L to spending before ξ would decrease spending across [ξ, T ).
Since the δL-discounted marginal utility of allocating resources to any time in this
interval (even from x) is higher than that to any time in [t, ξ), this deviation must
lower L’s payoff.
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To see that there are no equilibrium schedules beyond those identified above, first
observe that there cannot be tL, tH with

t ≤ tL < tH , xi
ti(h|t, σ

∗) > 0 ∀i. (109)

To see this, suppose by contradiction that (109) obtains. Since αH > αL, we must
have either

XtH (h|t, σ
∗) < e(r−αL)(tH−tL)XtL(h|t, σ

∗) (110)

or XtH (h|t, σ
∗) > e(r−αH)(tH−tL)XtL(h|t, σ

∗). (111)

If ξ ≤ tL, (109) is incompatible with open-loop behavior after the second an-
nouncement.

If ξ > tH , marginal reallocations from just after tL to just after tH , or vice-versa,
do not affect budget sizes at ξ. They therefore do not affect the schedule implemented
from ξ onward. But if (110), by the right-continuity of each player’s spending, L
prefers a marginal reallocation from just after tL to just after tH . Likewise, if (111),
H prefers a marginal reallocation from just after tH to just after tL. Since one of
these reallocations must increase a player’s payoff across [t, ξ) without affecting it
from ξ onward, (109) is incompatible with equilibrium behavior at h|t given ξ > tH .

If ξ ∈ (tL, tH ], let

λ(ϵ) ≡ sup
s∈(ξ−ϵ,ξ)

Xs, λ ≡ lim
ϵ→0

λ(ϵ). (112)

Because λ(ϵ) is weakly decreasing in ϵ, the limit is defined by the monotone conver-
gence theorem.

If λ < Xξ, then H can increase her payoff by increasing spending marginally for
some period just before ξ. This marginally reduces BH

ξ and so marginally reduces
spending at all s ∈ [ξ, T ), and spending offers weakly lower δH-discounted marginal
utility throughout this interval than at ξ.

If λ ≥ Xξ and

∀ϵ > 0 ∃ s ∈ (ξ − ϵ, ξ) : xL
s > 0, (113)

then L can increase his payoff by reducing spending marginally for some period
before ξ. This marginally increases BL

ξ and so marginally increases spending at
all s ∈ [ξ, T ), and allocation offers weakly higher δL-discounted marginal utility
throughout this interval than at ξ.

If λ ≥ Xξ and (113) fails, then either there exists s ∈ [t, ξ) with Xs = 0 or
spending across [t, ξ) is not polarized: i.e. there exists s ∈ (tL, ξ) with xH

s > 0. Both
possibilities are incompatible with equilibrium behavior at h|t because the equilib-
rium schedule across [t, ξ) must be the open-loop allocation of whatever resources
are spent on this interval.
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We have now shown that, in equilibrium, there do not exist tL, tH satisfying (109).
That is, the time t∗ at which H exhausts her budget is also the earliest time at
which L spends (on [t, T )). We also know that the equilibrium schedule is an open-
loop schedule before and after ξ. We will now see that these conditions rule out
equilibrium schedules other than xo given to ≤ ξ and x̃ (a UH-maximizing schedule
satisfying (a) and (b), not shown to be unique) given to > ξ.

Given to ≤ ξ, a schedule x ̸= xo satisfying the above conditions must feature
t∗ < to or t∗ > to.

If t∗ < to, then xH
s > x

H(o)
s for s < t∗ (or else H does not exhaust her budget

under x, and could increase her payoff by increasing spending at any time before ξ).
Spending at t∗ must be continuous, because if it is not, one of the players can increase
their payoff by shift spending across t∗ without affecting the other’s spending at any
time. xL is then unaffordable for L, since it requires L to begin spending sooner
and from a higher present-value spending rate—unless xL falls discontinuously at
ξ, which cannot happen in equilibrium, since L could then increase his payoff by
smoothing his spending across [t∗, T ).

If t∗ ∈ (to, ξ), it can be shown precisely as above that either xL fails to exhaust
L’s budget or xL increases discontinuously at ξ, neither of which is compatible with
equilibrium.

If t∗ ≥ ξ and spending falls discontinuously at ξ, xL fails to exhaust L’s budget.
If spending does not fall discontinuously at ξ, then, as shown in the construction of
x̃, H can increase his payoff by increasing spending before ξ and lowering BH

ξ .
Given to > ξ, if t∗ ≥ ξ and x does not maximize H’s payoff subject to (a) and

(b), H can increase her payoff by setting xH = x̃H across [t, ξ) for some schedule x̃
that is UH-maximizing given (a) and (b).

If t∗ < ξ, the open-loop schedule is either unaffordable for L even up to ξ or
xL must fall discontinuously at ξ. In the latter case, L could profitably deviate by
smoothing his spending across [t∗, T ) without affecting H’s spending anywhere.

Equilibrium placement of second announcement

Let h−
|t be a type 3 node, and let xo ≡ xo[t, T, BH

t , BL
t ].

If ξLτ (h
−
|t ) = ∅ (and ξHτ (h−

|t ) = t), it follows from the previous section that L imple-

ments xo for any choice of announcement σL(h−
|t ) ≥ to, and some instantiation of “x̃”

for σL(h−
|t ) < to. Relative to xo, therefore, any choice of σL(h−

|t ) < to induces less

spending across [σL(h−
|t ), T ) and greater spending across [t, σL(h−

|t )), a reallocation

which L disprefers. We must therefore have σL∗(h|t) ≥ to, and x(h−
|t , σ

∗) = xo.

If ξHτ (h−
|t ) = ∅ (and ξLτ (h

−
|t ) = t), it likewise follows from the previous section that

for any choice of σH(h−
|t ), H implements an IC-polarized schedule.



70

Recall that H’s favorite feasible IC-polarized schedule x∗ is unique, with t∗ < to.
We therefore have σL∗

s (h+
|t ) = 0 for s ∈ [t, t∗), where h+

|t denotes the type 4 node

subsequent to h−
|t given σH(h−

|t ) = t∗. So H can indeed achieve x∗ with this choice
of announcement, and cannot achieve a superior schedule.

This identifies the unique equilibrium schedule following h−
|t .

Unique equilibrium schedule given placement of first announcement

Let h|τ be a type 2 node and xo ≡ xo[τ , T, BH
τ , BL

τ ]. Note that to is interior because

we have assumed Bi
τ > 0 for both i. Let ξ ≡ ξ̂(h|τ ).

If ξHτ (h|τ ) = ξ is defined, the unique equilibrium schedule across [ξ, T ) is
xo[ξ, T,BH

ξ , BL
ξ ]. So, by a proof identical to that characterizing equilibrium schedules

following a type 4 node, any equilibrium schedule following h|τ is IC-polarized.

If ξHτ (h|τ ) = ∅, so that ξLτ (h|τ ) = ξ, the unique equilibrium schedule across [ξ, T ) is
x∗[ξ, T,BH

ξ , BL
ξ ]. Furthermore, because x∗ depends only on the initial budgets and

not on other features of the history, the unique equilibrium schedule across [t, ξ)
is the open-loop schedule for whatever pair of budgets is allocated to this interval.
Given this pair of observations, we will now show that any equilibrium schedule
following h|τ is IC-polarized.

Suppose x(h|τ , σ
∗) is not IC-polarized. It must then consist of an open-loop

schedule before ξ, on which L spends, followed by a Stackelberg schedule on and
after ξ, on which H spends.

If x(h|τ , σ
∗) is not IC-polarized and λ ≥ Xξ(h|τ , σ

∗), where λ is defined as in (112),
we will show that L can increase his payoff by reducing spending before ξ. We will
show this in two steps.

First, we will show that the δL-discounted utility generated by a resource allo-
cation across the interval before ξ during which L spends is strictly less than the
δL-discounted utility lost by an equal decrease to e−r(ξ−τ)BH

ξ . That is, L would pre-
fer to invest marginal resources until ξ and then to transfer them to H (if this were
permitted).

Second, we will show that if L invests to ξ, given that σH = σH∗ from ξ onward, he
can implement the collective schedule that would result by transferring the resources
to H at ξ and then following strategy σL∗. This will imply that the δL-discounted
utility lost by decreasing H’s budget at ξ is weakly less than that lost by equally
decreasing L’s budget at ξ. In conjunction, these results imply that L strictly prefers
to reduce spending before ξ, as desired.

For the first step, given a time s < ξ at which L spends, the δL-discounted flow
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utility to a marginal resource allocation at s equals

mL ≡ e(r−δL)(s−t)(σL∗
s (h|τ ))

−γ

per unit allocated.
As noted in the discussion of Stackelberg schedules at the beginning of this proof,

a decrease to BH
ξ decreases t∗[ξ, T,BH

ξ , BL
ξ ].

A decrease to BH
ξ does not however decrease t∗ by enough that

xH
ξ =

BH
ξ αH

1− e−αH(t∗−ξ)
(114)

weakly rises. To see this, choose two potential values for H’s budget at ξ, BH < B
H
,

and suppose t∗[BH ] < t∗[B
H
] are such that

BHαH

1− e−αH(t∗[BH ]−ξ)
>

B
H
αH

1− e−αH(t∗[B
H
]−ξ)

. (115)

For Z = A,B,C,D, let Z○ denote the value of Z○ at BH = B
H
, t̃ = t∗[B

H
], and

t = ξ (as ξ is now the beginning of the interval), fixing BL. Define Z○ likewise, but

at BH = BH and t̃ = t∗[BH ]. If the two sides of (115) were equal, a proof precisely
analogous to that from (103) to just following (107) would yield

B○
(
C○ − C○

)
+
(
D○ − C○

)(
B○ − B○

)
+
(
1− B○

)(
D○ − D○

)
< 0, (116)

with C○− C○, B○− B○, and D○− D○ negative, and the other terms positive. Inequality
(115) then increases the absolute values of these three differences without affecting
the positive terms. So (116) holds.

Thus, when H begins at ξ with budget BH < B
H
, if she exhausts her budget

at a time so far below t∗[B
H
] that (115) holds, then the marginal utility for H to

increasing the regime-change point from t∗[BH ] is greater than the marginal utility

for H to increasing the regime-change point from t∗[B
H
] given initial budget B

H
.

But both must be zero. This concludes the proof that when BH
ξ is smaller, H’s

spending path from ξ to the chosen regime-change point t∗[BH
ξ ] is lower.

H’s spending path before t∗ falls, the point t∗ at which spending falls discontin-
uously itself decreases, and L’s spending path after t∗ falls. It follows that, as in
the open-loop case, a decrease to BH

ξ decreases the resources allocated to all periods
from ξ to T in equilibrium. Furthermore, the δL-discounted flow utility to a marginal
resource allocation at s ≥ ξ increases in s (at proportional rate δH − δL) from ξ to
t∗, then jumps and is constant from t∗ to T . Since, flow utility is strictly concave in
flow spending, the δL-discounted utility (as of t) lost by a decrease to e−r(ξ−t)BH

ξ is
strictly more than mL per unit decreased. This proves that if at t L allocates any
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resources before ξ, and collective spending weakly falls at ξ, then L would prefer on
the margin to invest resources until ξ and then to transfer them to H (if this were
permitted).

We have just seen that, when BH
ξ increases, xH

ξ increases. For the second step, we
will first show that, when BL

ξ increases, xH
ξ increases by weakly less than when BH

ξ

increases.
Suppose that it does not. Then, given a partial schedule x|ξ, for simplicity let Bi

denote Bi(x|ξ),

UH(BH , BL) ≡
∫ T

ξ

e−δH(s−ξ)u(Xt(x|ξ, σ
∗))ds, (117)

and

V H(BH , BL, t∗)

denote H’s payoff following ξ given BH , BL, and (not necessarily optimal) regime-
change time t∗, as defined by (101) (with ξ, t∗ replacing t, t̃). By the envelope the-
orem, when at ξ H optimally sets the regime-change point at t∗[BH , BL], since her
payoff after ξ is C1 in both BH and the regime-change point, the marginal utility toH
of having a larger budget is always the same as what it would be if the regime-change
point were fixed:

∂UH

∂BH
(BH , BL) =

∂V H

∂BH

(
BH , BL, t∗[BH , BL]

)
= (xH

ξ )
−γ. (118)

So, on the assumption that when BL
ξ increases, xH

ξ increases by more than when BH
ξ

increases, we have

∂2UH

∂BH2
>

∂2UH

∂BL∂BH
. (119)

It can be seen from (100) that if both Bi are multiplied by the same proportion
(say m), then ∂UH/∂t∗ is multiplied by the same proportion for all t∗ (m1−γ). The
unique t∗ setting ∂UH/∂t∗ = 0 therefore does not change, and spending is multiplied
by m at all periods. That is, t∗[BH , BL] is h.o.d. 0 and x∗[BH , BL] is h.o.d. 1. It
follows from this homotheticity that ∂UH/∂Bi is in turn multiplied by the same
proportion (m−γ) for both Bi. Formally,

∂2UH

∂BL∂BHB
L + ∂2UH

∂BH2B
H

∂UH

∂BH

=
∂2UH

∂BL2 B
L + ∂2UH

∂BH∂BLB
H

∂UH

∂BL

. (120)

By Young’s Theorem,

∂2UH

∂BL∂BH
=

∂2UH

∂BH∂BL
.
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Substituting the left-hand side for the right-hand side into (120) and rearranging,

∂2UH

∂BL∂BH

(
BL ∂U

H/∂BL

∂UH/∂BH
−BH

)
+

∂2UH

∂BH2
BH ∂UH/∂BL

∂UH/∂BH
=

∂2UH

∂BL2
BL.

Then given (119),

∂2UH

∂BL∂BH

∂UH/∂BL

∂UH/∂BH
+

BH

BL

∂2UH

∂BL∂BH

( ∂UH/∂BL

∂UH/∂BH
− 1
)
<

∂2UH

∂BL2
. (121)

Given BH
ξ , BL

ξ , if resources are transferred at ξ from L to H, H can always
implement the collective schedule that would have obtained without the transfer, by
adopting her original schedule until the original regime-change point t∗[BH

ξ , BL
ξ ] and

then following L’s original schedule after t∗[BH
ξ , BL

ξ ] until her funds are exhausted.
H can then strictly improve on this schedule by smoothing her spending around
t∗[BH

ξ , BL
ξ ]. This implies that

∂UH

∂BH
>

∂UH

∂BL
. (122)

The term of (121) in parentheses is therefore negative. Since flow spending by H at
ξ increases as BL increases, the envelope theorem gives us that

∂2UH

∂BL∂BH
< 0.

The second term of the sum in (121) is therefore positive.
In combination with (122), which implies that the coefficient on ∂2UH/(∂BL∂BH)

in the first term of the sum is less than 1, this gives us

∂2UH

∂BL∂BH
<

∂2UH

∂BL2
. (123)

By (119) and (123), if marginal resources are transferred from H to L at ξ (from
some initial values of BH and BL), ∂UH/∂BH rises by

∂2UH

∂BL∂BH
− ∂2UH

∂BH2
< 0 (124)

(i.e. falls) per unit transferred, and ∂UH/∂BL rises by

∂2UH

∂BL2
− ∂2UH

∂BL∂BH
> 0. (125)
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As seen above with respect to BH , by the envelope theorem,

∂UH

∂BL
(BH , BL) =

∂V H

∂BL

(
BH , BL, t∗[BH , BL]

)
.

Partially differentiating (101) with respect to BL, with ξ, t∗[BH , BL] replacing t, t̃
respectively, we have

(
BL
)−γ 1− e(δ

L−αL−δH)(T−t∗[BH ,BL])

δH + αL − δL
e−γαH(t∗[BH ,BL]−ξ)

(
αL

1− e−αL(T−t∗[BH ,BL])

)1−γ

.

Given (125), there exists an ϵ > 0 such that, when BH falls by ϵ and BL increases
by ϵ, this partial derivative rises:(

BL + ϵ
)−γ 1− e(δ

L−αL−δH)(T−t∗[BH−ϵ,BL+ϵ])

δH + αL − δL
·

e−γαH(t∗[BH+ϵ,BL−ϵ]−ξ)

(
αL

1− e−αL(T−t∗[BH+ϵ,BL−ϵ])

)1−γ

(126)

≥
(
BL
)−γ 1− e(δ

L−αL−δH)(T−t∗[BH ,BL])

δH + αL − δL
e−γαH(t∗[BH ,BL]−ξ)

(
αL

1− e−αL(T−t∗[BH ,BL])

)1−γ

⇐⇒ (BL + ϵ)αL

1− e−αL(T−t∗[BH−ϵ,BL+ϵ])
≤ BLαL

1− e−αL(T−t∗[BH ,BL])
eα

H(t∗[BH ,BL]−t∗[BH−ϵ,BL+ϵ]) ×

( (
1− e(δ

L−αL−δH)(T−t∗[BH ,BL])
)/(

1− e−αL(T−t∗[BH ,BL])
)

(
1− e(δL−αL−δH)(T−t∗[BH−ϵ,BL+ϵ])

)/(
1− e−αL(T−t∗[BH−ϵ,BL+ϵ])

))− 1
γ

.

Because we have seen that both decreases to BH and increases to BL lower t∗,

t∗[BH − ϵ, BL + ϵ] < t∗[BH , BL]. (127)

It follows that the fraction in the numerator of the large fraction just above exceeds
the fraction in the denominator, and thus that

(BL + ϵ)αL

1− e−αL(T−t∗[BH−ϵ,BL+ϵ])
< eα

H(t∗[BH ,BL]−t∗[BH−ϵ,BL+ϵ]) BLαL

1− e−αL(T−t∗[BH ,BL])
. (128)

Let A○pre (for “pre-transfer”) denote the value of A○ at BH , BL, and t∗[BH , BL];

A○post denote the value of A○ at BH−ϵ, BL+ϵ, and t∗[BH−ϵ, BL+ϵ]; and B○pre/post–

D○pre/post likewise. We will now show that, given (124) and (128),

B○pre

(
C○post − C○pre

)
+
(
D○post − C○post

)(
B○pre − B○post

)
+
(
1− B○pre

)(
D○post − D○pre

)
> 0. (129)
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We will do this by showing that each of the terms of the sum above is positive.
We know from the discussion surrounding (104) that B○pre and 1 − B○pre are

positive. Also, (126)–(127) and (124) give us that C○post > C○pre.
It follows from the paragraph ending at (106) that D○pre > C○pre. It follows from

(128) and (124) that B○pre > B○post. It follows in turn from this and the reasoning
surrounding (107) that D○post > D○pre.

Recall that, by definition, the marginal utility for H of raising t∗ from t∗[BH , BL]
(given that the players’ budgets equal BH , BL) equals zero. It thus follows from
(129), by the calculations preceding (103) and (105), that the marginal utility for H
of raising t∗ from t∗(BH − ϵ, BL + ϵ) (given that the players’ budgets equal BH − ϵ
and BL + ϵ respectively) is positive. This contradicts the supposition that setting
t∗(BH − ϵ, BL + ϵ) is optimal for H given these budgets.

This completes the proof that (119) is false, i.e. that in fact

∂2UH

∂BH2
≤ ∂2UH

∂BL∂BH
,

and thus that, when BL
ξ increases, xH

ξ increases by weakly less than when BH
ξ in-

creases.

So, if L reduces spending before ξ, thereby increasing BL
ξ , he can implement the

schedule that would have subsequently have been implemented if the additional
resources had been transferred toH at ξ. In combination with the result that L would
prefer to reduce spending before ξ if the resources saved would then be transferred
to H at ξ, this completes the proof that an equilibrium schedule following h|τ cannot

both fail to be IC-polarized and feature a weak decrease at ξ ≡ ξ̂(h|τ ).

The proof that the schedule implemented by σ∗ following h|τ cannot both fail to be
IC-polarized and feature λ < Xξ(h|τ , σ

∗) is more straightforward.
If an equilibrium σ∗ implements a non-IC-polarized schedule following h|τ , we

must have (
Xτ (h|τ , σ

∗)
)−γ ≤ e(r−δH)(ξ−τ)∂U

H(BH , BL)

∂BH
(130)

= e(r−δH)(ξ−τ)
(
Xξ(h|τ , σ

∗)
)−γ

,

where, as before, Bi ≡ Bi
ξ(h|τ , σ

∗) and UH(·) is defined as in (117). The weak
inequality must hold for H not to prefer to increase spending at τ at the cost of
lowering her budget at ξ. The equality of the second line follows from the envelope
theorem.

But the δH-discounted marginal utility of a resource allocation at s,
e(r−δH)(s−τ)

(
Xs

)−γ
, weakly falls across [τ , ξ) and, given a jump in collective spending

at ξ, falls discontinuously at ξ. So (130) cannot hold.
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This completes the proof that any equilibrium schedule following h|τ is IC-
polarized.

Unique equilibrium schedule from beginning of period

Let h−
|τ be a type 1 node. Suppose H chooses announcement σH(h−

|τ ) = t∗ ≡
t∗[τ , T, BH

τ , BL
τ ]. We will now show that this subsequently implements the Stack-

elberg schedule x∗ ≡ x∗[τ , T, BH
τ , BL

τ ], regardless of σL(h−
|τ ) (given that the players

will play an equilibrium strategy profile after h−
|τ ). Since this is H’s favorite feasible

IC-polarized schedule, this will establish that it is the unique equilibrium schedule
following h−

|τ . We will let h+
τ denote the node after h−

|τ given the players’ announce-
ments.

Regardless of σL(h−
|τ ), ξ̂ ≡ ξ̂(h−

|τ ) ≤ t∗. Then if σ is an equilibrium, the schedule

following h+
|τ must be

• open-loop across [τ , ξ̂) (for some non-negative pair of budgets allocated by the
players to this interval) and

• IC-polarized.

At h+
|τ , therefore, L cannot plan to spend in equilibrium. Because ξ̂ ≤ t∗ < to, H’s

optimal open-loop spending plan across [τ , ξ̂) that is continuous with L’s δL-optimal
spending up to T would not exhaust H’s budget.

Since L spends nothing before ξ̂, H can implement x∗[τ , T, BH
τ , BL

τ ] by following
this schedule up to ξ̂ and, at ξ̂, if ξ̂ < t∗, announcing t∗ again. This is H’s favorite
feasible IC-polarized schedule, so this plan must be H’s best response to σL(h−

|τ ),
and what obtains in equilibrium.

Inductive step

Given a grid point τ < τ , suppose that the unique equilibrium schedule across [τ ′, T )
is Stackelberg. We will show that the unique equilibrium schedule beginning at any
pre-announcement node h|τ is Stackelberg as well.

As before, given a node h|t, if B
i(h|t) = 0 for some i, the unique subgame equi-

librium following h|t is trivial: −i allocates Bi(h|t) δ−i-optimally across [t, T ). We
therefore assume for the rest of this section of the proof that, when studying the
game beginning at any node h|t, B

i(h|t) > 0 for both i.

Unique equilibrium schedule after second announced node

Let h|t be a type 5 node following the second announcement after τ . Let xo ≡
xo[t, T, BH

t , BL
t ] and x∗ ≡ x∗[t, T, BH

t , BL
t ].
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A schedule implemented by σ∗ following h|t must be IC-polarized, by the proof
above of the unique equilibrium schedule following a type 2 node in the last period
given ξL > ξH . It must also be Stackelberg across [τ ′, T ), and, since the Stackelberg
schedule following τ ′ depends only on the budget sizes at τ ′, it must be open-loop
across [t, τ ′).

Let t̃ denote the time at which H exhausts her budget on a schedule implemented
by σ∗.

If to ≤ τ ′, the unique equilibrium schedule following h|t is x
o.

The fact that no other schedule is an equilibrium schedule follows from polariza-
tion. If t̃ > to, then collective spending increases discontinuously at t̃. Whenever this
occurs, L can then increase his payoff by beginning to spend before t̃. If t̃ < to ≤ τ ′,
then collective spending must fall discontinuously at t̃, so H can increase her payoff
by delaying some spending to after t̃. Neither deviation affects the other player’s
spending.

Any deviation by L reallocates resources from times with higher to times with
weakly lower δL-discounted marginal utility to resource allocation without affecting
H’s spending at any time. A deviation by H that maintains BH

τ ′ = 0 reallocates
resources from times with higher to times with weakly lower δH-discounted marginal
utility to resource allocation without affecting L’s spending at any time. A deviation
by H that results in BH

τ ′ > 0 would increase spending across [τ ′, T ). Since the δH-
discounted marginal utility to resource allocation throughout this interval is strictly
lower than that to resource allocation before τ ′, such a deviation must lower H’s
payoff. xo is therefore an equilibrium schedule.

If t∗ ≥ τ ′, the unique equilibrium schedule following h|t is x
∗.

The fact that no other schedule is an equilibrium schedule follows from polariza-
tion. If t̃ < τ ′, then collective spending falls discontinuously at t̃, so H can increase
her payoff by delaying some spending to after t̃ without affecting L’s spending. Given
that t̃ ≥ τ ′, H can implement x∗ by and only by setting xH

s = xH∗
s for s ∈ [t, τ ′).

Since x∗ is H’s favorite feasible IC-polarized schedule, H must do this in equilibrium.
Any deviation by H would result in an IC-polarized schedule other than x∗, so

H disprefers it. Any deviation by L must take the form of spending before τ ′. As
shown in the proof above of the unique equilibrium schedule following a type 2 node
in the last period given ξL > ξH , L disprefers such a deviation. x∗ is therefore an
equilibrium schedule.

If τ ′ ∈ (t∗, to), the unique equilibrium schedule following h|t consists of H allocating
BH

t δH-optimally across [t, τ ′) and L allocating BL
t δL-optimally across [τ ′, T ). Call

this the quasi-Stackelberg schedule with regime-change time τ ′.
Again, the fact that no other schedule is an equilibrium schedule follows from
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polarization. If t̃ < τ ′, then collective spending falls discontinuously at t̃, so H
can increase her payoff by delaying some spending to after t̃ without affecting L’s
spending. H’s favorite schedule among those with t̃ > τ ′—given a Stackelberg
schedule after τ ′, and thus a discontinuous drop in collective spending at t̃ and BL

t

spent δL-optimally across [t̃, T )—is that in which she spends BH
t δH-optimally across

[t, t̃). H’s favorite location for t̃, under the restriction that t̃ ≥ τ ′, then follows from
the proof that H has a unique favorite t̃ without this restriction, in the discussion of
Stackelberg schedules at the beginning of this proof. There it is shown that, given
that the derivative of H’s payoff with respect to regime-change time t̃ (there denoted
ξ) equals 0 at t̃ = t∗, this derivative is negative for all t̃ > t∗. Here, since τ ′ > t∗, it
follows that H’s favorite location for t̃, under the restriction that t̃ ≥ τ ′, is τ ′. So,
from a strategy profile implementing an IC-polarized schedule in which H does not
spend down by τ ′, H can implement a strictly preferred schedule by spending down
δH-optimally by τ ′.

This implies that H cannot profitably deviate. Since collective spending weakly
falls at τ ′, it is clear that L also cannot profitably deviate. The quasi-Stackelberg
schedule with regime-change time τ ′ is therefore an equilibrium schedule.

Equilibrium schedules given placement of second announcement

Given a type 4 node h|t, let ξ ≡ ξ̂(h|t) denote the time of the subsequent node. Let
xo ≡ xo[t, T, BH

t , BL
t ] and x∗ ≡ x∗[t, T, BH

t , BL
t ]. Recall that t

∗ < to.
To begin, recall that the unique equilibrium schedule after h|ξ is IC-polarized.

Also, since it is determined by {Bi
ξ}, any equilibrium schedule following h|t is open-

loop until ξ.

If to < ξ, the unique equilibrium schedule following h|t is x
o.

We will first show that no other schedule is an equilibrium schedule.
If L does not spend before ξ, collective spending jumps up at ξ. If H exhausts

her budget at ξ, then L can increase his payoff by beginning to spend before ξ. If
H spends at ξ, then spending jumps up at ξ, regardless of whether the following
schedule is open-loop, Stackelberg, or quasi-Stackelberg. In all three cases, H can
increase her payoff by marginally increasing spending to before ξ. In the open-loop
case this is because this deviation will shift resources away from all times [ξ, T ) to
times before ξ, and all the latter offer higher δH-discounted marginal utility than
all the former; in the Stackelberg case, it follows from the envelope theorem; and in
the quasi-Stackelberg case H can reallocate resources from after to before ξ without
affecting L’s schedule.

Suppose therefore that L spends before ξ. If H spends at ξ, then if collective
spending weakly jumps up at ξ, H prefers to increase spending across some interval
before ξ during which L spends, by the reasoning just above. If collective spend-
ing jumps down at ξ, L wants to decrease his spending marginally before ξ: in the
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open-loop case because this will constitute a transfer away from all of [ξ, T ), and so
from lower- to higher- δL-discounted marginal utility times; in the Stackelberg case
by the proof in the “Final period: Unique equilibrium placement of first announce-
ment” section above; and in the quasi-Stackelberg case because he can then increase
reallocate spending to after τ without affecting H’s schedule. If instead H exhausts
her budget before ξ, then spending must be continuous at ξ, or else L can increase
his payoff by smoothing his spending without affecting H’s spending. So only xo can
be an equilibrium schedule following h|t.

To verify that xo is in fact an equilibrium schedule, observe that any deviation
by H that leaves BH

ξ > 0 transfers resources from before ξ to all times weakly after
ξ, which all offer strictly lower δH-discounted marginal utility. Any deviation thus
lowers her payoff. It is trivial that L has no incentive to deviate.

If t∗ ≤ ξ and to ≥ ξ, the unique equilibrium schedule following h|t is the quasi-
Stackelberg schedule with regime-change time ξ (reducing to the open-loop schedule
if to = ξ and to the Stackelberg schedule if t∗ = ξ).

Suppose L spends before ξ. If collective spending jumps down at ξ, L prefers to
reallocate marginal spending from before to after ξ regardless of which equilibrium-
type prevails from ξ onward, as explained above. If collective spending does not
jump down at ξ, then H must spend at ξ (since to > ξ), and H prefers to reallocate
marginal spending from after to before ξ regardless of which equilibrium-type prevails
from ξ onward, as explained above.

So in any equilibrium, L does not spend before ξ. H does not spend at or after
ξ, because if she does, the equilibrium schedule must be IC-polarized with regime-
change time t̃ > ξ; H strictly disprefers any such schedule to the quasi-Stackelberg
schedule with regime-change time ξ, as explained above; and H can implement the
latter by exhausting her budget by ξ.

This is an equilibrium schedule because any deviation by H implements an IC-
polarized schedule which she disprefers, and because again L has no incentive to
deviate.

If t∗ ∈ (ξ, τ ′) and to ≤ τ ′, the unique equilibrium schedule following h|t is H’s
favorite IC-polarized schedule that is open-loop after ξ: i.e. the schedule denoted x̃
in the proof of the unique equilibrium schedule given the placement of the second
announcement in the final period (see the paragraph up to (108)).

Suppose L spends before ξ. Then, as we have seen, because to > ξ, either
spending jumps down at ξ or it does not and H spends at ξ; and in the former case
L prefers to reallocate from before to after ξ, and in the latter case H prefers to
reallocate in the other direction. So L does not spend before ξ on any equilibrium
schedule.

Because to ≤ τ ′, to[ξ, T,BH
ξ , BL

ξ ] ≤ τ ′ as long as H spends at least as quickly on
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[t, ξ) as she does on xo[t, T, BH
t , BL

t ]; so in this case the unique equilibrium schedule
following ξ is open-loop. If H spends more slowly on [t, ξ) than xH(o)[t, T, BH

t , BL
t ],

then BH
ξ > 0 and collective spending jumps up at ξ (whichever of the three equilibria

obtains), and H prefers to reallocate from after to before ξ as we have seen. So any
equilibrium schedule must be IC-polarized and open-loop after ξ.

H’s favorite schedule of this form is found (and found to exist and be unique)
in the proof of the unique equilibrium schedule given the placement of the second
announcement in the final period. Since it never features a jump up in collective
spending at ξ, its regime-change time is before τ ′. Given that L spends nothing
before ξ, H can unilaterally implement it (as of t) simply by following it with her
own spending up to ξ. So no other schedule can obtain in equilibrium.

Any deviation by L to spending before ξ reallocates resources from all times
weakly after ξ to some times before. Since the former all offer strictly higher δL-
discounted marginal utility to resource allocations than the latter, any deviation
lowers L’s payoff. Any deviation by H that leaves to[ξ, T,BH

ξ , BL
ξ ] ≤ τ ′ would by con-

struction lower her payoff. Any more extreme deviation would implement a schedule
that can be constructed by beginning with a schedule that leaves to[ξ, T, BH

ξ , BL
ξ ] ≤ τ ′

and reallocating resources from before ξ to some set of times weakly after ξ, all of
which (from this baseline) offer strictly lower δH-discounted marginal utility. So H
has no incentive to deviate either, and the proposed schedule is in fact an equilibrium
schedule.

If t∗ ∈ (ξ, τ ′) and to > τ ′, either only the quasi-Stackelberg schedule with regime-
change time τ ′ is the unique equilibrium schedule following h|t, only H’s favorite IC-
polarized schedule that is open-loop following ξ, or both are equilibrium schedules
following h|t.

L cannot spend before ξ in equilibrium just as in the t∗ ∈ (ξ, τ ′), to ≤ τ ′ case.
Again, therefore, BH

ξ determines the equilibrium schedule following ξ. If BH
ξ is small

(including zero), the equilibrium schedule following ξ is open-loop; if larger, it is
quasi-Stackelberg with regime-change time τ ′; and if larger still, it is Stackelberg,
with a regime-change time after τ ′.

If H spends so quickly before ξ that the equilibrium schedule following ξ is
Stackelberg with a regime-change time after τ ′, then her (and collective) spending
must jump up at ξ, since t∗ < τ ′. H then prefers to reallocate from after to before
ξ. This leaves the quasi-Stackelberg and open-loop possibilities. H can implement
either, as we have seen. In equilibrium, she must implement her favorite of the two,
or simply one of the two if they offer her equal payoffs.

Given that she does so, a deviation by L to spending before ξ never increases
spending at any time after ξ, so it always shifts resources from times with higher
to times with lower δL-discounted marginal utility, lowering his payoff. A deviation
by H before ξ always lowers her payoff by construction. The proposed equilibrium
schedules are therefore in fact equilibrium schedules.
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If t∗ ≥ τ ′, x∗ is the unique equilibrium schedule following h|t.
The proof that L cannot spend before ξ in equilibrium is precisely as in the

cases above. Since only H spends before ξ, and any equilibrium schedule after ξ
is IC-polarized, any equilibrium schedule is IC-polarized. x∗ is H’s favorite feasible
IC-polarized schedule, and she can implement it by following it up to ξ. So if there
is an equilibrium schedule, it must be x∗.

Any deviation by H would implement an alternative, and therefore dispreferred,
IC-polarized schedule. Any deviation by L would implement a reallocation from
some or all times weakly after ξ to before ξ, which he disprefers. x∗ is therefore an
equilibrium schedule.

Unique equilibrium schedule incorporating choice of second announcement

Given a type 3 node h|t, let x
o ≡ xo[t, T, BH

t , BL
t ] and x∗ ≡ x∗[t, T, BH

t , BL
t ].

Suppose ξLτ (h|t) = ∅ (and ξHτ (h|t) = t).
If to ≤ τ ′, L implements xo by choosing announcement ξL ∈ [to, τ ′]; the quasi-

Stackelberg schedule with regime-change time ξ by choosing ξL ∈ (t∗, to); and H’s
favorite schedule that is open-loop after ξ by choosing ξL ∈ (t, t∗] (which is Stack-
elberg iff ξL = t∗). L’s favorite collective schedule, among those he can implement,
is Xo: the others can all be constructed by beginning with Xo and then shifting
resources from [ξ, T ) to [t, ξ), where the latter all offer weakly higher δL-discounted
marginal utility than the former. L thus chooses ξL ∈ [to, τ ′] in equilibrium, and the
schedule implemented is xo.

If t∗ < τ ′ < to, L implements the quasi-Stackelberg schedule with regime-change
time ξL by choosing ξL ∈ [t∗, τ ′], and if L chooses ξL ∈ (t, t∗), he implements either
(a) the quasi-Stackelberg schedule with regime-change time τ ′ or (b) H’s favorite
feasible IC-polarized schedule that is open-loop after ξL. If he chooses ξL ∈ (t, t∗)
and H weakly prefers (b) to (a), then the regime-change time implemented by (b)
cannot be after τ ′: if it were, then H would prefer to smooth her spending across
[t, τ ′) rather than letting her spending jump down at ξ, as it must under (b). The
collective schedule associated (b) can therefore be constructed by beginning from that
associated with (a) and shifting resources from after to before ξL. The collective
schedule associated with the quasi-Stackelberg schedule with regime-change time
ξL < τ ′ can be constructed likewise. Since such shifts must lower L’s payoff, L’s
favorite implementable schedule is the quasi-Stackelberg schedule with regime-change
time τ ′. This is the schedule implemented in equilibrium.

If t∗ ≥ τ ′, the equilibrium schedule is x∗ regardless of ξL.

Suppose ξHτ (h|t) = ∅ (and ξLτ (h|t) = t). As shown in the previous subsection, on equi-
librium schedules given the placement of the second announcement, the implemented
schedule is IC-polarized for any choice of ξH . H’s favorite feasible IC-polarized
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schedule is x∗. If t∗ < τ ′, she can implement it by choosing ξH = t∗; if t∗ ≥ τ ′,
she implements it with any choice of ξH . x∗ is therefore always implemented in
equilibrium.

Polarization of equilibrium schedules given placement of first announcement

Given a type 2 node h|τ , let ξH ≡ ξHτ (h|τ ), and define ξL and ξ̂ likewise. Let
xo ≡ xo[τ, T,BH

τ , BL
τ ] and x∗ ≡ x∗[τ, T,BH

τ , BL
τ ]. We will show that any equilibrium

schedule following h|τ is IC-polarized.

If ξ̂ = ξH = ξL = τ ′, the equilibrium schedule(s) following h|τ are those found
following a type 5 node h|t (with τ in place of t), all of which are IC-polarized.

If ξ̂ = ξH = ξL < τ ′, the equilibrium schedule(s) following h|τ are those found

following a type 4 node h|t (with τ in place of t and ξ̂ in place of ξ̂(h|t)), all of which
are IC-polarized.

If ξ̂ = ξL < ξH , the equilibrium schedule following ξ̂ is Stackelberg. As we have
seen, this implies that the equilibrium schedule following h|τ is open-loop if to ≤ ξ̂,

quasi-Stackelberg with regime-change time ξ̂ if t∗ < ξ̂ < to, and Stackelberg if ξ̂ ≤ t∗.
In every case, it is IC-polarized.

If ξ̂ = ξH < ξL, the equilibrium schedule following ξ̂ is open-loop
if to[ξ̂, T, BH

ξ̂
, BL

ξ̂
] ≤ τ ′, quasi-Stackelberg with regime-change time τ ′ if

t∗[ξ̂, T, BH
ξ̂
, BL

ξ̂
] < τ ′ < to[ξ̂, T, BH

ξ̂
, BL

ξ̂
], and Stackelberg if t∗[ξ̂, T, BH

ξ̂
, BL

ξ̂
] ≥ τ ′.

This is precisely analogous to the equilibrium schedules following a type 5 node h|t

(with ξ̂ in place of t). The equilibrium schedule(s) following h|τ are those found

following a type 4 node h|t (with τ in place of t and ξ̂ in place of ξ̂(h|t)), all of which
are IC-polarized.

Unique equilibrium schedule from beginning of period

Given a type 1 node h−
|τ , let x

o ≡ xo[τ, T,BH
τ , BL

τ ] and x∗ ≡ x∗[τ, T,BH
τ , BL

τ ], let ξ
i

denote σi∗(h−
|t ), and let h+

|τ denote the subsequent (type 2) node.

If t∗ ≥ τ ′, suppose ξH = τ ′. If ξL = τ ′, the unique equilibrium schedule fol-
lowing h+

|τ is Stackelberg, as following a type 5 node with t∗ > τ ′. If ξL < τ ′, the

unique equilibrium schedule following ξL is Stackelberg; so, since t∗ > ξL, the unique
equilibrium schedule following h+

|τ is also Stackelberg.

If t∗ < τ ′, suppose ξH = t∗. If ξL ≥ t∗, the unique equilibrium schedule following
ξH is open-loop, quasi-Stackelberg, or Stackelberg, in the usual way; L does not
spend before ξH in equilibrium, because to > ξH ; and H can thus implement x∗

by spending her budget δH-optimally across [τ, t∗). If ξL < t∗, the unique equilib-
rium schedule following ξL is Stackelberg; so, since t∗ > ξL, the unique equilibrium
schedule following h+

|τ is also Stackelberg.
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Since in equilibrium the schedule following h+
|τ must be polarized, and since at h−

|τ
H can implement her favorite feasible IC-polarized schedule x∗ with the appropriate
strategy, x∗ is the unique equilibrium schedule following h−

|τ .

A limit equilibrium schedule must be Stackelberg

For the rest of the proof, x∗ and t∗ will be as defined by Proposition 4.

Continuous time

Having completed the inductive step, we have proven that, fixing horizon T , the
equilibrium schedule of game n is unique and Stackelberg. Denote this schedule
by x[T ]. x[T ] is independent of n, so it is also the unique equilibrium schedule in
continuous time.

x[T ] converges pointwise almost everywhere to x∗ as T → ∞

Let UH [t̃, T ] denote H’s payoff from a quasi-Stackelberg schedule with regime-change
time t̃ across [0, T ). Let f(t̃, T ) denote the derivative of UH with respect to t̃, as
given by (102) with 0 replacing t, expressed as a function of t̃ and T . Observe that
it is defined and continuous in both variables over T ∈ (0,∞] and t̃ ∈ (0, T ).

Fixing BH and BL, let t∗(T ) denote the value of t̃ that sets (102) equal to 0 given
horizon T . Recall that t∗(T ) is unique for all T > 0, including T = ∞. It can be
found analytically that t∗(∞) = t∗.

Fixing t̃, when T rises, B○t̃ falls and C○t̃ and D○t̃ rise. By (105), as we have seen,
this implies that f(t̃, T ) rises. It follows that t∗(T ) increases in T .

By the monotone convergence theorem, t
∗ ≡ limT→∞ t∗(T ) is defined. Further-

more, because f(t̃, T ) is continuous, f(t
∗
,∞) = limT→∞ f(t∗(T ), T ). This limit

equals zero, since each of its elements equals zero by definition of t∗(·). Therefore
t
∗
= t∗.
It is then easy to verify that x

[T ]
t converges pointwise to x∗

t for all t ̸= t∗.

A polarized equilibrium schedule must be Stackelberg

Let σ∗ be a polarized equilibrium.
Let h|t be a post-announcement node. Suppose σL∗

s (h|t) > 0 for some s, and
let s ≡ inf{s : σL∗

s (h|t) > 0}. (Recall that σL∗(h|t) is a spending plan for L across

[t, ξ̂(h|t)), so s ∈ [t, ξ̂(h|t)].) By definition of polarized equilibrium, xH
s (h|t, σ

∗) = 0
for all s ≥ s (the s = s case following from the assumption that spending plans are
right-continuous). For σL∗ to be an optimal strategy for L, therefore, we must have
xL
s (h|t, σ

∗) = BL
s e

(r−αL)(s−s) for all s ≥ s. Since σ∗ is a polarized equilibrium and

L begins spending before the next node, if BH(h|t) > 0, σH∗ must allocate BH(h|t)
δH-optimally across [t, s); and collective spending cannot be discontinuous at s, or
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else restricting spending to before (weakly after) s cannot be a best response for H
(L). So, if BH(h|t) > 0, we can only have σL∗(h|t) ̸= 0 if the schedule implemented

by σ∗ following h|t is open-loop with a regime-change time before ξ̂(h|t). This in turn

is possible only if to[t,∞, BH(h|t), B
L(h|t)] < ξ̂(h|t):

to[t,∞, BH(h|t), B
L(h|t)] ≥ ξ̂(h|t)

=⇒ σL∗(h|t) = 0 for all post-announcement nodes h|t. (131)

Suppose that σH is such that, at any pre-announcement node h|t with ξHτ(t)(h|t) =

∅ and BH(h|t) > 0, H chooses announcement

σH(h|t) = min(t∗[t,∞, BH(h|t), B
L(h|t)], τ

′(t));

and that any post-announcement node h|t with t∗[t,∞, BH(h|t), B
L(h|t)] ≥ ξ̂(h|t), H

chooses spending plan

σH(h|t) = xH∗
[t,ξ̂(h|t))

[t,∞, BH(h|t), B
L(h|t)].

For any σL∗ satisfying (131), x(σH , σL∗) = x∗. This can be seen by observing that
(σH , σL∗) implements x∗ following all post-announcement nodes:

• At any type 2 node h|t with BH(h|t) > 0,

ξ̂(h|t) ≤ t∗[t,∞, BH(h|t), B
L(h|t)] < to[t,∞, BH(h|t), B

L(h|t)],

so in equilibrium H is the only spender across [t, ξ̂(h|t)), and follows the Stack-
elberg schedule across this interval.

• H exhausts her budget at ξ̂(h|t) only if ξ̂(h|t) = t∗[t,∞, BH(h|t), B
L(h|t)]. So

at a type 4 node h|t, either BH(h|t) = 0 and the Stackelberg schedule has
been followed across [τ(t), t) (and will be implemented by L across [t,∞)), or
BH(h|t) > 0 and ξHτ(t)(h|t) = ∅, in which case the next node will occur weakly
before the Stackelberg regime-change time, and H will be the only spender
until the next node, following the Stackelberg schedule.

• A type 5 node h|t can be reached only at the Stackelberg regime-change time,
in which case BH(h|t) = 0, the Stackelberg schedule has been followed across
[τ(t), t), and it will be implemented by L across [t,∞).

SinceH can implement x∗ when L employs any strategy σL∗ satisfying (131), since x∗

is her favorite feasible IC-polarized schedule, and since x(σ∗) is a feasible IC-polarized
schedule for any polarized equilibrium σ∗, there is no polarized equilibrium σ∗ with
x(σ∗) ̸= x∗.
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A polarized equilibrium exists

Let σH∗ satisfy the conditions imposed on σH in the previous subsection, and de-
fine it fully by stipulating that, for a pre-announcement node h|t with ξHτ(t)(h|t) =

∅ and BH(h|t) = 0, σH∗(h|t) = τ ′(t), and for a post-announcement node h|t

with t∗[t,∞, BH(h|t), B
L(h|t)] < ξ̂(h|t), H allocates BH(h|t) δH-optimally across

[t, to[t,∞, BH(h|t), B
L(h|t)]) if t

o ≤ τ ′(t) and across [t, τ ′(t)] otherwise.
Let σL∗ satisfy (131); for post-announcement nodes h|t with

to[t,∞, BH(h|t), B
L(h|t)] < ξ̂(h|t),

σL∗(h|t) = x
L(o)

[t,ξ̂(h|t))
[t,∞, BH(h|t), B

L(h|t)];

and for pre-announcement nodes h|t with ξLτ(t)(h|t) = ∅, σL∗(h|t) = τ ′(t).

Because σL∗ satisfies (131), and for any post-announcement node h|t
with to[t,∞, BH(h|t), B

L(h|t)] < τ ′(t) we have σH∗
s (h|t) = 0 for all s ≥

to[t,∞, BH(h|t), B
L(h|t)], x[t,∞)(h|t, σ

∗) is polarized for all nodes h|t. Therefore, if
σ∗ is an equilibrium, it is a polarized equilibrium.

Given that L adopts strategy σL∗, x((σH , σL∗)) is IC-polarized for any σH . Since
x(σ∗) = x∗, which is H’s favorite feasible IC-polarized schedule, σH∗ is a best re-
sponse for H to σL∗.

Following the node-cases of the “inductive step” above, it can be verified that
for any grid point τ , if the players will play a strategy profile that implements the
Stackelberg schedule from τ ′ onward (as σ∗ does), and if H plays σH∗ across [τ, τ ′),
σL∗ is a best response for L for every possible node that might arise across [τ, τ ′).
The proofs of L’s best responses through the inductive step rely nowhere on the
assumption that T is finite.

When γ < 1, infinite-horizon game n is continuous at infinity (for any n), since
the range of feasible payoffs at any period is bounded above and below and the
stream of flow payoffs cannot grow more quickly than the players’ discount rates, by
(9). By the one-shot deviation principle, therefore, σL∗ is a best response for L to
σH∗. This establishes that σ∗ is an equilibrium of the infinite-horizon game when
γ < 1.

When γ ≥ 1, however, the game is not continuous at infinity. We must verify
explicitly that, given that H plays σH∗, at any node h|t L has no incentive to deviate
permanently from σL∗ to an alternative strategy σL.

σL∗ maximizes L’s forward-looking optimization problem at all nodes h|t with
BH(h|t) = 0. Deviation to σL therefore can only be profitable for L at a node h|t
with BH(h|t) > 0. Suppose by contradiction that there is such an h|t and σL.

If σ ≡ (σH∗, σL) is such that

∃τ ∈ G(n) : BH(h) = 0, h ≡ h−
|τ (h|t, σ), (132)
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then σL offers L a lower payoff than σL∗ at h|t. This can be seen by backward
induction. First, because of the unique optimality for L of the schedule implemented
by σL∗ from h onward, a permanent deviation to σL cannot offer L higher utility
than a deviation to σL until h followed by a reversion to σL∗, and must offer L lower
utility if x(h, σ) ̸= x(h, σ∗). Then, given that the players play σ∗ from τ onward, and
given that H plays σH∗ from τ onward (where τ denotes the grid point before τ), it
follows from the “inductive step” of the proof of the unique limit equilibrium that
any strategy σ̃L among L’s most preferred strategies at any node h|s with s ∈ [τ , τ)
must satisfy x(h|s, σ̃) = x(h|s, σ

∗). By induction, deviation to a strategy σL satisfying
(132) is weakly undesirable for L at any node.

Consider a strategy σ̃L not satisfying (132). We will assume by contradiction that
permanently deviating to σ̃L at h|t increases L’s payoff, and show that this implies
that L’s payoff to playing σ̃L from time τ onward is −∞ for some grid point τ > t.

By the reasoning above, for any grid point τ > t, L’s payoff to playing σ̃L at
all nodes h|s with s ∈ [t, τ), and σL∗ from τ onward, is weakly less than his payoff
to playing σL∗ from h|t onward. So, in general denoting L’s continuation payoff to
playing strategy σL from grid point τ > t onward after playing σ̃L at all nodes h|s
with s ∈ [t, τ) by

C(σL, τ) ≡
∫ ∞

τ

e−δL(s−τ))u
(
Xs

(
h−
|τ (h|t, σ̃), (σ

H∗, σL)
))
ds,

and denoting L’s payoff to playing σL from h|t onward by C(σL, t), we have

C(σL∗, t) ≥ C(σ̃L, t) + e−δL(τ−t)
(
C(σL∗, τ)− C(σ̃L, τ)

)
=⇒ C(σ̃L, τ)− C(σL∗, τ) ≥ eδ

L(τ−t)
(
C(σ̃L, t)− C(σL∗, t)

)
. (133)

If σ̃L is a profitable deviation for L at h|t, the right-hand side of (133) is positive,
so the difference in continuation payoffs as a function of τ−t must be “fast-growing”,
which we will define to mean asymptotically bounded below by c0e

δL(τ−t) for some
constant c0 > 0. C(σ̃L, τ) can never exceed the continuation payoff for L at τ
obtained if both parties invest all funds from t to τ and subsequently disburse them
δL-optimally. This continuation payoff plateaus if γ > 1, and grows linearly in τ−t at
absolute rate r if γ = 1. (See the payoff expression from Proposition 1, substituting
B(h|t)e

r(τ−t) for B.) For the difference in continuation payoffs to be fast-growing,
therefore, C(σL∗, τ) must eventually be negative and its absolute value fast-growing.

Since σ∗ implements the Stackelberg schedule from any pre-
announcement grid node onward, C(σL∗, τ) = UL(x∗[τ ]), where x∗[τ ] ≡
x∗[τ,∞, BH(h−

|τ (h|t, σ̃)), B
L(h−

|τ (h|t, σ̃))]. An expression for this payoff can be
found analytically by integrating∫ ∞

τ

e−δL(s−τ)u(x∗
s[τ ])ds,
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because the regime-change point t∗[τ ] can be found analytically in this setting where
the horizon is infinite (see Proposition 4). The result can be written in terms of the
collective initial budget Bτ and L’s initial budget share bτ as

B1−γ
τ

1− γ
·

(
αL
)−γ

αHαLγ + (δH − δL)2(1− γ)
·
(
αHαLγ

(
bτ + (1− bτ )

αH

αL
η
)1−γ

+(δH − δL)2

(1− γ)b
αH+δL−δH

αH
τ

(
(bτ + (1− bτ )

αH

αL
η
)− αL

αH γ
)
, γ > 1; (134)

1

δL

((δH − δL)2

δHδL

(
1 +

(1− bτ )δ
H

bτδL
η
)− δL

δH

+ ln(Bτ ) + ln
(
bτδ

L + (1− bτ )δ
Hη
)

+
δH − δL

δH
+

r − δH

δL

)
, γ = 1.

If γ > 1, the coefficient on B1−γ
τ is negative and is bounded below across bτ ∈

[0, 1]. For C(σL∗, τ) to be fast-growing, therefore, B1−γ
τ must be fast-growing. Bτ

must thus eventually be bounded above by c1e
δL

1−γ
(τ−t) for some c1 > 0. Because the

spending rate cannot sustainably shrink more slowly than the collective budget, the
discounted continuation payoff to adopting σL from a sufficiently large grid point
τ > t must likewise be bounded above, for some c2 > 0, by

∫ ∞

τ

e−δL(s−t)

(
c2e

δL

1−γ
s
)1−γ

1− γ
ds = −∞.

If γ = 1, the terms added to ln(Bτ ) are likewise bounded across bτ ∈ [0, 1]. For
C(σL∗, τ) to be fast-growing, therefore, ln(Bτ ) must be (again, negative and) fast-
growing, so Bτ must eventually be bounded above by a function f(τ) that falls su-
perexponentially to zero quickly enough that ln(f(τ)) is (negative and) fast-growing.
Again, because the spending rate cannot sustainably shrink more slowly than the
collective budget, the discounted continuation payoff to following σL from sufficiently
large τ must be bounded above, for some c1, c2 > 0, by∫ ∞

τ

e−δL(s−t) ln
(
c1f(s)

c2
)
ds = −∞.

This contradicts the assumption that σL is a profitable deviation at h|t from σL∗,
whose payoff is well-defined and finite (as confirmed by (134), recalling conditions
(9) and (18)). σ∗ is thus an equilibrium of infinite-horizon game n for all n.
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A.6 Proof of Proposition 6

Preliminaries

Following the notation of Appendix A.5, we will let x∗[t, T, BH , BL] denote the Stack-
elberg schedule beginning at t with budgets BH and BL and ending at T , dropping
some or all of the arguments where clear. X∗, etc. are defined likewise. We will also
let bH ≡ BH/B = 1− b.

We begin by showing that the frontier of efficient payoffs is strictly concave.
Let U0 = (UH(0), UL(0)) and U1 = (UH(1), UL(1)) be two efficient payoff profiles,

and let X(0) and X(1) be collective schedules which attain these payoff profiles.
The mixture collective schedule X(ζ), defined by X

(ζ)
t = ζX

(1)
t + (1 − ζ)X

(0)
t , is

feasible: ∫ ∞

0

e−rt
(
ζX

(1)
t + (1− ζ)X

(0)
t

)
dt

= ζ

∫ ∞

0

e−rtX
(1)
t dt+ (1− ζ)

∫ ∞

0

e−rtX
(0)
t dt

= ζB + (1− ζ)B = B.

Furthermore, for ζ ∈ (0, 1), the discounted flow utility that X(ζ) offers player

i at each time t is defined and equal to e−δitu(ζX
(1)
t + (1 − ζ)X

(0)
t ). By the strict

concavity of u(·), this is strictly greater than the ζ-mixture of the discounted flow

utilities offered by X(0) and X(1), i.e. e−δit(ζu(X
(1)
t ) + (1− ζ)u(X

(0)
t )).

Thus Xζ offers a payoff profile that is weakly Pareto-superior to ζU1+(1− ζ)U0.
It follows that the frontier of efficient payoffs cannot exhibit any (even weak)
convexities.

Because the frontier of efficient payoffs is concave, an efficient collective schedule X
must maximize

Ua(X) ≡ aUH(X) + (1− a)UL(X)

for some payoff weight a ∈ [0, 1]. In particular, given efficient collective schedule X,
the corresponding Ua cannot be increased by shifting resources between time 0 and
any other time t. Given that X(·) is right-continuous, this implies

X−γ
0 = ert

(
ae−δH t + (1− a)e−δLt

)
X−γ

t ∀t. (135)

So X is optimal according to time preference factor

β
(a)
t = ae−δH t + (1− a)e−δLt, (136)
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or time preference rate

δ
(a)
t = − β̇

(a)
t

β
(a)
t

=
aδHe−δH t + (1− a)δLe−δLt

ae−δH t + (1− a)e−δLt
. (137)

As we can see, δ
(a)
0 = aδH + (1 − a)δL. Therefore a is not only the weight placed

on H’s payoff, but also the weight placed on her time preference in determining the
starting time preference rate.

Given payoff weight a, let w
(a)
t denote the weight placed on H’s time preference

rate at t, such that

δ
(a)
t = w

(a)
t δH + (1− w

(a)
t )δL. (138)

Substituting (137) into (138) and rearranging, we have

w
(a)
t =

a

a+ (1− a)e(δH−δL)t
.

Observe that

w
(a)
0 = a. (139)

Fixing payoff weight a, the resulting schedule is not time-consistent, because the
resulting time preference rate (137) is not constant. Upon reaching time s > 0,
aUH +(1− a)UL is maximized across times t ≥ s by allocating the collective budget
according to time preference rate schedule δt−s, as prescribed, not according to a
fixed δs.

However, if upon reaching s we instead place weight

ã ≡ w(a)
s

on H’s future payoff (and 1− ã on L’s), the resulting time preference rate schedule
is the same across t ≥ s as that prescribed at time 0 using payoff weight a. That is,

δ
(ã)
t−s = δ

(a)
t ∀s ≥ t.

We can see this by substituting w
(a)
s for a into (136), simplifying, and differentiating:

β
(ã)
t−s =

a · e−δH(t−s)

a+ (1− a)e(δH−δL)s
+

(1− a)e(δ
H−δL)s · e−δL(t−s)

a+ (1− a)e(δH−δL)s

=
eδ

Hs

a+ (1− a)e(δH−δL)s

(
ae−δH t + (1− a)e−δLt

)
=⇒ δ

(ã)
t−s = −

β̇
(ã)
t−s

β
(ã)
t−s

=
aδHe−δH t + (1− a)δLe−δLt

ae−δH t + (1− a)e−δLt
= δ

(a)
t .
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Let X(a) now denote the efficient collective schedule implied by payoff weight a. It
is unique by the strict concavity of the feasible payoff set. It is also C1 in a, as can
be seeing by rearranging and integrating (135) to get∫ ∞

0

e
r−rγ

γ X
(a)
0

1

ae−δH t + (1− a)e−δLt
dt−B = 0 (140)

and applying the implicit function theorem to find that X
(a)
0 , and thus X

(a)
t for each

t, is C1 in a.
Let χ(a) denote the corresponding collective schedule defined by

χ
(a)
t ≡ X

(a)
t /B.

Likewise, for bH ∈ [0, 1], let χ∗[bH ] denote the collective schedule defined by

χ∗
t [b

H ] ≡ X∗
t [BbH , B(1− bH)]/B.

Given bH , by the homotheticity of U(·), X(a) is [weakly] Pareto superior to X∗

iff χ(a) is [weakly] Pareto superior to χ∗[bH ].

Given any χ(a) for a ∈ (0, 1), there is an interval (bH , b
H
) ⊂ (0, 1) such that χ(a)

is a strict Pareto improvement on χ∗[bH ] iff bH ∈ (bH , b
H
). This follows from the

inefficiency of χ∗[bH ] for bH ∈ (0, 1) and the facts that

i. U
(
χ∗[0]

)
= U

(
χ(0)
)
,

ii. U
(
χ∗[1]

)
= U

(
χ(1)
)
,

iii. UH
(
χ∗[bH ]

)
is continuous and strictly increasing (in fact C1 with a positive

derivative) in bH , and

iv. UL
(
χ∗[bH ]

)
is continuous and strictly decreasing (in fact C1 with a negative

derivative) in bH .

We can thus define

bH(a) ≡ argmin
bH

: UL
(
χ(a)

)
≥ UL

(
χ∗[bH ]

)
,

b
H
(a) ≡ argmax

bH
: UH

(
χ(a)

)
≥ UH

(
χ∗[bH ]

)
,

with b
H
(a) > bH(a). Recall that X(a), and thus U i(χ(a)), are C1 in a. By the implicit

function theorem and (iii)-(iv), bH(a) and b
H
(a) are also C1 in a, with negative

derivatives.
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By construction, (bH(a), b
H
(a)) is the range of initial impatient budget shares bH

such that χ(a) is strictly Pareto superior to χ∗[bH ]. As noted above, by homotheticity
of U(·), it is also the bH-range such thatX(a) is Pareto superior toX∗. So both parties
weakly prefer X(a) to X∗ at t = 0 iff

bH ∈
(
bH(a), b

H
(a)
)
. (141)

More generally, given a schedule x, it holds at all t that both parties weakly pre-
fer the forward-looking collective schedule X

(a)
[t,∞) to the forward-looking Stackelberg

collective schedule X∗[t,∞, BH(x|t), B
L(x|t)] iff

bH(x|t) ∈
(
bH
(
w

(a)
t

)
, b

H(
w

(a)
t

))
∀t. (142)

Observe that ∂
∂t
w

(a)
t < 0 and thus that ∂

∂t
bH
(
w

(a)
t

)
< 0 and ∂

∂t
b
H(

w
(a)
t

)
< 0.

We will now show that, for any a satisfying (141), there is a schedule x such that
X = X(a) and (142) holds.

A schedule everywhere superior to forward-looking Stackelberg

Observe that bH
(
w

(a)
t

)
and b

H(
w

(a)
t

)
are C1 in t for any payoff weight a. We can

therefore define a differentiable path of budget shares for H, {b̃Ht }, by

b̃H0 = bH ;

d

dt
b̃Ht = max

(
0,

1 + p− 2pt
1− p

)
max

(
f1(b̃

H
t , t), f2(b̃

H
t , t)

)
+min

(
2
pt − p

1− p
, 1
)
f2(b̃

H
t , t),

(143)

where

f1(b̃
H
t , t) ≡

(b̃Ht − bH)
(

d
dt
b
H
(w

(a)
t )− d

dt
bH(w

(a)
t )
)

b
H
(w

(a)
t )− bH(w

(a)
t )

, f2(b̃
H
t , t) ≡ (b̃Ht − 1)

X
(a)
t

B(X
(a)
|t )

,

p ≡ bH − bH(a)

b
H
(a)− bH(a)

∈ (0, 1), pt ≡
b̃Ht − bH

(
w

(a)
t

)
b
H(

w
(a)
t

)
− bH

(
w

(a)
t

) .
Because the right-hand side of (143) is continuous in t (fixing b̃Ht ) and Lipschitz
continuous in b̃Ht across [0, T ] for all T , b̃HT is defined and C1 for all T by the Pi-
card–Lindelöf theorem.

Recall that p0 = p by (139), and observe that p(·) is differentiable. We will show
that pt ∈ (0, 1) for all t.

First, observe that d
dt
b̃Ht linearly interpolates, in pt, from max(f1, f2) at pt ≤ p

to f2 at pt ≥ 1+p
2
. Also, d

dt
pt strictly increases in d

dt
b̃Ht , and when d

dt
b̃Ht = f1(b̃

H
t , t),

d
dt
pt = 0. So if pt ≤ p, d

dt
pt ≥ 0. This establishes that we never reach a t with pt < p.
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Next, suppose by contradiction that pt∗ = 1 for some t∗. Let t∗ denote the
minimum such time, noting that a minimum exists because p(·) is continuous and

[0,∞) is closed below. Then b̃Ht∗/b
H(

w
(a)
t∗

)
= 1. Since pt is continuous and p0 < 1,

there is an s ∈ (0, t∗) such that pt ∈ [1+p
2
, 1) ∀t ∈ [s, t∗], and therefore also such that

b̃Ht /b
H(

w
(a)
t

)
< 1 throughout this interval. However,

d

dt

b̃Ht

b
H
(w

(a)
t )

≤ 0 ∀t ∈ [s, t∗].

This is because the proportional, and thus the absolute, growth rate of

b̃H(x|t)/b
H
(w

(a)
t ) is non-positive iff

d
dt
b
H(

w
(a)
t

)
b
H(

w
(a)
t

) ≥
d
dt
bH(x|t)

bH(x|t)
.

By (143) and the fact that b̃H(x|t) ≤ b
H
(w

(a)
t ) for t ∈ [s, t∗],

d
dt
b̃H(x|t)

b̃H(x|t)
=

(
b̃H(x|t)− 1

)
X

(a)
t /B(X

(a)
|t )

bH(x|t)
≤
(
b
H(

w
(a)
t

)
− 1
)
X

(a)
t /B(X

(a)
|t )

b
H(

w
(a)
t

) ∀t ∈ [s, t∗].

The proof is thus completed by showing that

d
dt
b
H(

w
(a)
t

)
b
H(

w
(a)
t

) ≥
(
b
H
(w

(a)
t )− 1

)
X

(a)
t /B(X

(a)
|t )

b
H
(w

(a)
t )

∀t ∈ [s, t∗]. (144)

Suppose by contradiction that (144) fails for some t ∈ [s, t∗]. The right-hand side

equals ( d
dt
bHt )/b

H
t given bHt = b

H
(w

(a)
t ) and xH

t = X
(a)
t . But bHt = b

H
(w

(a)
t ) implies

that H is indifferent between the forward-looking efficient and Stackelberg schedules:

UH
(
X

(a)
[t,∞)

)
= UH

(
X∗[t,∞, BH(x|t), B

L(x|t)]
)
. (145)

bHt > 0 and the failure of (144) then imply that there is an ϵ > 0 such that it is

feasible to set xH
s = X

(a)
s for s ∈ [t, t + ϵ), and such that if this obtains, b

H
falls by

a larger proportion than bH across the interval. We then have bH
(
w

(a)
t+ϵ

)
< bHt+ϵ and

thus

UH
(
X

(a)
[t+ϵ,∞)

)
< UH

(
X∗[t+ ϵ,∞, BH(x|t+ϵ), B

L(x|t+ϵ)]
)

=⇒

UH
(
X

(a)
[t,∞)

)
< UH

(
X

(a)
[t,t+ϵ)

)
+ e−δHϵUH

(
X∗[t+ ϵ,∞, BH(x|t+ϵ), B

L(x|t+ϵ)]
)
. (146)
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But this is impossible, since the schedule across the right-hand side of (146)—

xH
s = X

(a)
s , xL

s = 0 for s ∈ [t, t + ϵ) followed by a Stackelberg schedule—is an IC-
polarized schedule from t onward, and H’s favorite such schedule is the Stackelberg
schedule itself from t onward (see Appendix A.5, “Stackelberg schedules”, the t = ∞
case), whose payoff for H equals the left-hand side of (146) by (145). So (144) holds.

So, given the path of impatient budget shares {b̃Ht } characterized by (143), pt ∈
(0, 1) ∀t.

We will now show that there is a unique schedule x(a) such that xH(a) + xL(a) =
X(a) and bH(x

(a)
|t ) = b̃Ht ∀t, and confirm that x(a) is (i) feasible in the sense that

x
i(a)
t ≥ 0 ∀i, t and (ii) continuous. We will not need to further verify that x(a) does

not violate either player’s budget constraint, since we have already established that
b̃Ht ∈ (0, 1) ∀t.

Given a schedule x(a) with xH(a) + xL(a) = X(a), bH(x
(a)
|t ) = b̃Ht ∀t iff

d

dt
b̃Ht =

d

dt
bH(x

(a)
|t ) =

b̃Ht X
(a)
t − x

H(a)
t

B(X
(a)
|t )

=⇒ x
H(a)
t

X
(a)
t

= b̃Ht − d

dt
b̃Ht ·

B(X
(a)
|t )

X
(a)
t

(147)

(with x
L(a)
t /X

(a)
t = 1− x

H(a)
t /X

(a)
t ).

x(a) is thus well defined. Furthermore (147) > 1 at t iff d
dt
b̃Ht < f2(b̃

H
t , t), and

(147) < 0 at t only if d
dt
b̃Ht < 0. Both are impossible, by (143) and the non-positivity

of f1 and f2. So x(a) is feasible. Finally, because b̃Ht is C1 in t, x(a) is continuous.
This completes the construction of a feasible schedule x(a) that is continuous and

satisfies (142).

Constructing a grid and equilibrium

Given a grid G and a payoff weight a satisfying (141), let σ∗ be a polarized equilib-
rium, and let σ̃ be the strategy profile of the game played on G with

σ̃i(h|t) =


τ ′(t), h|t = h−

|t (σ̃);

x
i(a)
[t,τ ′(t)), h|t = h+

|t (σ̃),

σi∗(h|t) otherwise.

(148)

Note that any node reached on the path of σ̃ must occur at a grid point t ∈ G, and
so be of type 1 or type 2.

We will now construct a grid G such that σ∗ is an equilibrium of the game played
on G.
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Let τ0 = 0, and define τk for k > 1 recursively as follows.
Let X̂[t, ϵ] be the truncated schedule across [t,∞) with

X̂s[t, ϵ] ≡ X∗
t+ϵ[t+ ϵ,∞, B̂H [t, ϵ], B̂H [t, ϵ]]e(r−αH)(s−(t+ϵ)), s ∈ [t, t+ ϵ);

X∗[t+ ϵ,∞, B̂H [t, ϵ], B̂L[t, ϵ]], s ≥ t+ ϵ,

where

B̂i[t, ϵ] ≡
(
Bi
(
x
(a)
|t
)
+

∫ t+ϵ

t

e−r(s−t)x−i(a)
s ds

)
erϵ ∀i.

To interpret X̂[t, ϵ], suppose that x|t = x
(a)
|t . Suppose then that, at t, each i receives

a budget-increase equal to the present value of the resources allocated by −i across
[t, t+ ϵ) according to x−i(a); invests the entirety of the newly increased Bi

t until t+ ϵ
(so that their budget at t + ϵ is then B̂i[t, ϵ]); and subsequently implements the
Stackelberg schedule. Then

Xt+ϵ = X∗
t+ϵ[t+ ϵ,∞, B̂H [t, ϵ], B̂L[t, ϵ]].

X̂[t,t+ϵ)[t, ϵ] is then the truncated collective schedule obtained across [t, t + ϵ) by
positing that collective spending grows at rate r − αH across [t, t + ϵ) (as it does
just after t + ϵ) and is continuous at t + ϵ. X̂[t, ϵ] is of course infeasible given

initial budgets {Bi(x
(a)
|t )}, for any ϵ > 0. In particular, observe that for all s ≥ t,

X̂s[t, 0] = X∗
s [t,∞, BH(x

(a)
t ), BL(x

(a)
t )], and X̂s[t, ϵ] is C1 in ϵ with a derivative strictly

positive for all ϵ ≥ 0. Observe also that X̂ is Stackelberg with respect to the present-
value budgets it allocates from player.

Then let

ϵi(t) ≡ ϵ > 0 : U i
(
X

(a)
[t,∞)

)
= U i

(
X̂[t, ϵ]

)
,

ϵ(t) ≡ min(ϵH(t), ϵL(t)).

ϵi(t) exists and is unique for each i because

U i
(
X̂[t, 0]

)
= U i

(
X∗[t,∞, BH(x

(a)
|t ), BL(x

(a)
|t )]

)
< U i

(
X

(a)
[t,∞)

)
;

limϵ→∞ U i(X̂[t, ϵ]) is the supremum feasible payoff (∞ if γ ≤ 1, 0 if γ > 1); and
U i(X̂[t, ϵ]) is continuous and monotonic in ϵ.

Let τk = τk−1 + ϵ(τk−1).

We must establish that limk→∞ τk = ∞, so that the grid is locally finite and the
game is well-defined. This follows from the facts that, if not, then limk→∞ τk = τ
for some τ < ∞, by the monotone convergence theorem, and thus ϵi(τk) → 0 for
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some i; that ϵi(t) is continuous in t for each i, by the implicit function theorem; and
ϵi(τ) > 0 for each i.

To establish that σ̃ is an equilibrium of the game played on grid G = {τk}k∈N, we
will show that no player profits by deviating at any node. Given a node τ , we will
let X̂ ≡ X̂[τ, τ ′ − τ ].

If h|t is off the path of σ̃, this follows from the fact that σ∗ is an SPE.
If h|τ is on path and of type 1, a deviation by H induces an IC-polarized subse-

quent schedule, which she must weakly disprefer to X∗[t,∞, BH
τ , BL

τ ] (see Appendix
A.5); and since X∗

s [t,∞, BH
τ , BL

τ ] < X̂s ∀s ≥ τ , she prefers the latter schedule.
Since a deviation by L to an announcement ξL < τ ′ will be followed by polar-
ized equilibrium behavior from τ onward, it follows from Appendix A.5: Inductive
step: Polarization of equilibrium schedules given placement of first announcement
(the ξ̂ = ξH < ξL case) that L weakly prefers the schedule implemented by σ∗ given
ξL = τ ′ to that implemented by σ∗ given any other ξL. This schedule likewise exhibits
lower spending than X̂ across [τ,∞) in all three cases (open-loop, quasi-Stackelberg,
and Stackelberg).

If h|τ is on path and of type 2, first observe that

X∗
τ ′ [τ

′,∞, BH(x
(a)
|τ ′ ), B

L(x
(a)
|τ ′ )] > X

(a)
τ ′ . (149)

If (149) failed, then, because the growth rate of X(a) is everywhere within (r −
αH , r − αL) by (136), and because X(a) cannot lie everywhere above X∗ after τ ′

given the same initial budgets since both collective schedules are budget-exhausting,
there would have to be a t > t∗[τ ′,∞, BH(x

(a)
|τ ′ ), B

L(x
(a)
|τ ′ )] such that

X∗
t [τ

′,∞, BH(x
(a)
|τ ′ ), B

L(x
(a)
|τ ′ )] < / = / > X

(a)
t , t < / = / > t.

X(a) could thus be constructed by shifting resources from times after t to times
before t. Since all of the latter offer weakly lower δL-discounted marginal
utility than all of the former, X

(a)
[τ ′,∞) is then not a Pareto improvement on

X∗[τ ′,∞, BH(x
(a)
|τ ′ ), B

L(x
(a)
|τ ′ )], as we know it to be by construction.

Next, observe that if X is a collective schedule following τ that i can implement
by deviating at h|τ , i can also implement X given

Bi
τ = B̃i

τ ≡ Bi(x
(a)
|τ ) +

∫ τ ′

τ

e−r(t−τ)x
−i(a)
t dt,

B−i
τ = B̃−i

τ ≡ B−i(x
(a)
|τ )−

∫ τ ′

τ

e−r(t−τ)x
−i(a)
t dt,

x−i
t = 0, t ∈ [τ, τ ′)
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(and polarized equilibrium behavior from τ ′ onward) by reserving the resources
“transferred” from the other player for spending before τ ′ as prescribed by x−i(a).

Under these circumstances, with i = H, any schedule H implements is an IC-
polarized allocation of {B̃i}. It follows from (149) that

B̃H <

∫ ∞

τ

e−r(t−τ)X̂H
t dt,

and so the same also holds for L. To summarize, therefore, H prefers X̂ to
X∗[τ,∞, B̃H , B̃L], as both are Stackelberg but the former uses larger budgets for
both players (and UH(X∗[BH , BL]) is increasing in both arguments); weakly prefers
X∗[τ,∞, B̃H , B̃L] to any IC-polarized allocation of {B̃i}; and weakly prefers an IC-
polarized allocation of {B̃i} to any schedule she can implement by deviating at τ .

With i = L, he maximizes his payoff by setting a δL-optimal schedule across [τ, τ ′)
with some fraction of his B̃L

τ and allocating the rest to the Stackelberg schedule that
will obtain following τ ′. (A maximal payoff exists by the extreme value theorem,
since UL is continuous in the fraction of B̃L

τ allocated before τ ′.) Whatever fraction
he chooses, the resulting schedule following τ ′ is Stackelberg with an initial budget
for H of B̃Her(τ

′−τ) < B̂H and an initial budget for L weakly less than B̂L (with
equality only if L spends nothing before τ ′).

Since UL(X∗[BH , BL]) increases in both arguments (see Appendix A.5: Final
period: Unique equilibrium schedule given placement of first announcement), an
optimal deviation by L produces a schedule X with

UL(X[τ ′,∞)) < UL(X̂[τ ′,∞)).

The cited subsection also establishes that an optimal division of B̃L
τ across τ ′ must

yield limt→τ ′+ Xt ≤ Xτ ′ , and that in general X∗
t [t,∞, BH

t , BL
t ] increases in Bi

t for
both i. Since B̂i must be weakly greater than Bi(x|τ ′) for both i, limt→τ ′+ Xt ≤ X̂τ ′ .
Finally, since to be δL-optimal X must grow at rate r − αL across [τ, τ ′), and since
X̂ grows at the slower rate r−αH across this interval, X̂s > Xs ∀s ∈ [τ, τ ′) and thus

UL(X[τ,τ ′)) < UL(X̂[τ,τ ′)).

We have shown that σ∗ is an equilibrium on any grid G with τ ′ ≤ τ + ϵ(τ) ∀τ ∈ G.
To find an admissible grid sequence such that σ∗ is an equilibrium of every grid

in the sequence, let f(t) ≡ {fk(t)}k∈N be the sequence defined recursively by

f0(t) = t, fk(t) = fk−1(t) + ϵ(fk−1(t)) (k > 0), (150)

so that G = f(0). Then let G(0) = G, and let

G(n) = G(n−1) ∪
∞⋃

m=0

f
( m

2n−1

)
, n > 0.
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Intermediate equilibrium payoffs

So far we have established that any payoff profile U that is (i) efficient and (ii)
strictly Pareto superior to U(X∗) is an equilibrium payoff profile. We will now show
that any feasible payoff profile U that is Pareto superior to U(X∗) is an equilibrium
payoff profile.

Let [a, a] be the range of values of a such that X(a) is Pareto superior to X∗.

Observe that, since χ
(a)
t is continuous in a for all t and nowhere constant in a (see

(140)), U i
(
X(a)

)
is continuous and strictly monotonic in a for each i.

Define f (a)(t) as in (150), but with ϵ(·) defined with respect to a.

Suppose U is efficient but only weakly Pareto superior to U(X∗), with U i = U i(X∗).
Let

ai ∈ {a, a} ≡ a : U i
(
X(a)

)
= U i

(
X∗),

and recall that for any a ∈ (a, a), there a grid G and a strategy profile σ such that
σ is an equilibrium of the game given grid G and X(σ) = X(a).

We can therefore define a monotonic sequence {an} with a0 ∈ (a, a) and an → ai,
and a corresponding grid sequence with G(0) = f (a0)(0) and

G(n) =
∞⋃
k=0

f (an)
(
τ
(n−1)
k

)
∪

∞⋃
m=0

f (an)
( m

2n−1

)
, n > 0.

The first union ensures that G(n) ⊃ G(n−1). The second ensures that ∪∞
n=0G

(n) is
dense. The inclusion of all elements of f (an)(τ) for τ ∈ G(n) ensures that, for each
n, there is a strategy profile σ(n) that is an equilibrium of the game played on G(n)

and such that X(σ(n)) = X(an). Since X
(an)
t → X

(ai)
t for all t, X(ai) is an equilibrium

collective schedule. Since U(X(an)) → U = U(X(ai)), U is an equilibrium payoff.

Suppose U is Pareto superior to U(X∗) but inefficient. Then there is an efficient
payoff profile U strictly Pareto superior to U (and so also to U(X∗)) and a C ∈ (0, 1)
such that

U = U [C] ≡

{
C1−γU, γ ̸= 1;(
U

H
+ ln(C), U

L
+ ln(C)

)
, γ = 1.

Let a ∈ (0, 1) be such that U(X(a)) = U .
Let σ∗ be a polarized equilibrium, and for c ∈ (C, 1), let σ(c) be the strategy

profile with

σi(h|t) =


τ ′(t), h|t = h−

|t (σ);{
Bi

τ1
(1− c)ers

}
s∈[0,τ1)

, t = 0 and h|t = h+
|t (σ);

cerτ1x
i(a)
[t−τ1,τ ′(t)−τ1)

, t > 0 and h|t = h+
|t (σ);

σi∗(h|t), otherwise.
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Given σ(c), at time 0, each i chooses announcement ξi = τ1 and then allocates fraction
1 − c of Bi uniformly across [0, τ1). The players then play σ̃, as defined by (148),
with initial time τ1 in place of 0 and initial budgets {cerτ1Bi} in place of {Bi}.
We will now find a τ1 such that σ(c) is an equilibrium of the game played on grid
G ≡ 0 ∪

(
τ1 + f (a)(0)

)
, where τ1 + f (a)(0) denotes the set f (a)(0) with τ1 added to

each element. Note that f (a)(0) constructs a grid on which σ̃ is an equilibrium given
any pair of budgets in the same ratio as {Bi}, as {cerτ1Bi} is.

It follows from the fact that σ̃ and σ∗ are SPEs that σ is an equilibrium at nodes
after time 0. To verify that σ is an equilibrium at 0 for sufficiently small τ1, i’s payoff
to defecting at either the type 1 or the type 2 node at t = 0 can be upper-bounded
by the payoff i receives if the entire budget is allocated δi-optimally across [0, τ1)
and also (of course infeasibly) invested to τ1 and subsequently Stackelberg:∫ τ1

0

e−δitu
( Bαi

1− e−αiτ1
e(r−αi)t

)
dt+ e−δiτ1U i

(
X∗[τ1,∞, BHerτ1 , BLerτ1 ]

)
→ 0 + U i

(
X∗[0,∞, BH , BL]

)
= U i(X∗)

as τ1 → 0+. U i(X(σ(c))) converges to U
i
[c] as τ1 → 0+. Since c > C, U

i
[c] > U

i
[C] =

U i ≥ U i(X∗).
Given c ∈ (C, 1), let τ1[c] be a time such that σ(c) is an equilibrium on any grid

G = 0 ∪
(
τ1 + f (a)(0)

)
with τ1 ≤ τ1[c]. Let {cn} be a decreasing sequence with

c0 ∈ (C, 1) and cn → C. We can then define a corresponding grid sequence with
G(0) = 0 ∪

(
τ1[c0] + f (a)(0)

)
and

G(n) = G(n−1) ∪
∞⋃
k=0

(
τ
(n)
1 + f (a)

(
τ
(n−1)
k − τ

(n)
1

))
∪

∞⋃
m=0

f (a)
( m

2n−1

)
, n > 0,

where τ
(n)
1 = min(1/2n−1, τ1[cn]). The first term ensures that G(n) ⊃ G(n−1). The

second ensures that σ(cn) is an equilibrium of the on-path subgame beginning at τ
(n)
1 .

The third again ensures that ∪∞
n=0G

(n) is dense.
{σ(cn)} is thus a sequence of equilibria across an admissible grid sequence. Since

Xt(σ
(cn)) → CX

(a)
t ∀t ̸= 0 (since τ

(n)
1 → 0), CX(a) is an equilibrium collective

schedule. Since U
(
X(σ(cn))

)
→ U

(
CX(a)

)
= U , U is an equilibrium payoff.

A.7 Proof of Proposition 7

Existence and uniqueness of constrained-polarized equilibrium schedule

Let σ∗ be a strategy profile in which, at each post-announcement node h|t, for s ∈
[t, ξ(h|t)) we have

σH∗
s (h|t) = BH(h|t)αe

(r−α)(s−t), (151)
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σL∗
s (h|t) =


0, s < t

∗
(h|t);(

BH(h|t)e
(r−α)(t

∗
(h|t)−t) +BL(h|t)e

r(t
∗
(h|t)−t)

)
· αLe(r−αL)(s−t

∗
(h|t)) −BH(h|t)αe

(r−α)(s−t), s ≥ t
∗
(h|t),

(152)

where

t
∗
(h|t) ≡ t+max

(
0, ln

(BH(h|t)

BL(h|t)

α− αL

αL

)/
α
)
. (153)

Observe that

i. by (151), xH((σH∗, σL)) is independent of σL;

ii. by (151) and (152), Xs(σ
∗) is the δL-optimal allocation of Bt

∗
(h|t)

across s ≥
t
∗
(h|t); and

iii. by (152) and (153), xL
t
∗
(h|t)

(σ∗) = 0 if t
∗
(h|t) > t.

By (ii), xL(σ∗) exhausts L’s budget in present-value terms. By (i) and (iii), any
alternative schedule for L either would sub-optimally allocate his resources weakly
after t

∗
(h|t) or would shift some of L’s resources from weakly after t

∗
(h|t) to times

before t
∗
(h|t) which, because αL ≤ α and X is continuous at t

∗
(h|t), offer weakly

lower δL-discounted marginal utility. It follows that σL∗ is a best response to σH∗,
and that for any constrained-polarized equilibrium σ, x(σ) = x(σ∗).

As with the unconstrained game of Proposition 5, the constrained game is continuous
at infinity iff γ < 1. In this case, to prove that σH∗ is a best response to σL∗, we can
use the one-shot deviation principle. Let h|t be a post-announcement node and let
ξ ≡ ξ(h|t).

Let Ys ≡ e−rsBH
t denote the present value, as of time 0, of H’s budget at s,

and let it be written as a function of the history and/or strategy profile as BH
t

can. Ẏs ≤ 0, since H has no outside income, and Ẏs ≥ αYs due to the spending
constraint. Since xH is right-continuous, any deviation by H at h|t to a strategy σ̃H

with σ̃H
s (h|t) < BH

s α for some s ∈ [t, ξ) raises Ẏ from its lower bound for an interval
following s, which raises Yξ and thus BH

ξ . So a deviation by H shifts resources from
some times in [t, ξ) (a) to increases in BH

ξ and possibly also (b) to later times in the
[t, ξ) interval. We will now show that both shifts lower H’s payoff.

Regarding (b): let

T ≡ {s ∈ [t, ξ) : σ̃H
s (h|t) > Xs(h|t, σ

∗)}, (154)

T ≡ {s ∈ [t, ξ) : σ̃H
s (h|t) < Xs(h|t, σ

∗)}



100

denote the set of times in [t, ξ) at which H spends more (less) under σH than under
σH∗. Let

Y ≡
∫
T
e−rs

(
σ̃H
s (h|t)−BH(h|t)e

(r−α)(s−t)
)
ds.

Let

t−1(y) ≡ s : Yt − Ys(h|t, σ
∗) = y

t̃−1(y) ≡ s : Yt − Ys(h|t, (σ̃
H , σL∗)) = y.

Observe first that t−1(y) is defined for all but a countable number of y ∈
[Y (h|t), Yξ(h|t, σ

∗)). If a value of y in this interval is undefined, there exist t1, t2 > t1
such that

Yt1(h|t, σ
∗) = Yt2(h|t, σ

∗) = y,

so, by the monotonicity of Y(·), Ys = y for all s ∈ [t1, t2]. Thus if there were an
uncountable number of values of y in the interval for which t−1(y) were undefined,
the interval would contain an uncountable number of disjoint intervals, which it does
not (as can be seen e.g. from the fact that each interval contains a distinct rational,
and the rationals are countable). Likewise, t̃−1(y) is defined almost everywhere for
(σ̃H , σL∗). Now observe that, for any y ∈ [0, Y ] for which t−1(y) and t̃−1(y) are
defined,

t̃−1(y) ≥ t−1(y).

Finally, the payoff gains for H achieved by any above-baseline expenditures before
ξ implemented by σ̃H are bounded above by∫ Y

0

e(r−δH)t̃−1(y)u′
(
Xt̃−1(y)(h|t, σ

∗)
)
dy, (155)

and the payoff losses to the first Y units of below-baseline expenditures are bounded
below by ∫ Y

0

e(r−δH)t−1(y)u′
(
Xt̃−1(y)(h|t, σ

∗)
)
dy. (156)

(The integrals are defined because t−1(·) and t̃−1(·) are defined almost everywhere.)
Since t̃−1(y) ≥ t−1(y) almost everywhere, and since X(·)(h|t, σ

∗) always grows at a
proportional rate weakly greater than r−αH , the expression in integral (155) is less
than or equal to that in (156) for every value of y. So any reallocations within [t, ξ)
implemented by σ̃H from the σH∗ baseline cannot raise H’s payoff.

Regarding (a): we will show that increases to BH
ξ increase Xs for all s ≥ ξ.

Let h̃ ≡ h+
ξ (h|t, (σ̃

H , σL∗)) and h∗ ≡ h+
ξ (h|t, σ

∗). Observe that t
∗
(h) is continuous
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and weakly increasing in BH(h), and that xH
s (h, σ

∗) is proportional to BH(h) for all
s ≥ ξ.

If t
∗
(h̃) = t, then t

∗
(h∗) = t; the schedule implemented by σ∗ from ξ onward is

in either case the δL-optimal allocation of the collective budget Bξ; and the increase
to BH

ξ proportionally increases Xs for all s ≥ ξ.

If t
∗
(h̃) > t, then the increase to BH

ξ increases t
∗
—i.e. t

∗
(h̃) > t

∗
(h∗)—unless

α = αL (in which case t
∗
(h̃) = t

∗
(h∗) = ξ regardless of BH

ξ ). And Xt
∗
(h̃)(h̃, σ

∗) >

Xt
∗
(h̃)(h

∗, σ∗): if it were not, then the collective resources allocated across [t
∗
(h̃),∞)

would be weakly less following h̃ than following h∗, even while the resources allocated
by H would be strictly greater, so L’s spending (now beginning at t

∗
(h̃) ≥ t

∗
(h∗))

would not exhaust his budget. Since r − α ≤ r − αL, Xs(h̃, σ
∗) > Xs(h

∗, σ∗) for all
s ∈ [ξ, t

∗
(h̃)). So again, the increase to BH

ξ increases Xs for all s ≥ ξ.
This proves that one-shot deviations do not raise H’s payoff. If γ < 1, this

completes the proof that σH∗ is a best response to σL∗.

Suppose γ ≥ 1. Given that post-announcement node h|t has been reached, denote
H’s continuation payoff to playing strategy σH from grid point τ > t onward after
playing σ̃L at all nodes h|s with s ∈ [t, τ) by

C(σH , τ) ≡
∫ ∞

τ

e−δH(s−τ))u
(
Xs

(
h−
|τ (h|t, σ̃), (σ

H , σL∗)
))
ds,

and denote H’s payoff to playing σH from h|t onward by C(σH , t). By backward
induction on one-shot deviations, deviation from σH∗ to σ̃H for only a finite length
of time lowers H’s payoff following h|t. We therefore have

C(σH∗, t) > C(σ̃H , t) + e−δH(τ−t)
(
C(σH∗, τ)− C(σ̃H , τ)

)
=⇒ C(σ̃H , τ)− C(σH∗, τ) > eδ

H(τ−t)
(
C(σ̃H , t)− C(σH∗, t)

)
.

If σ̃H is a profitable deviation for H at h|t, the right-hand side of (133) is positive,
so the difference in continuation payoffs as a function of τ−t must be “fast-growing”,
as defined to mean asymptotically bounded below by c0e

δH(τ−t) for some constant
c0 > 0. C(σ̃H , τ) can never exceed the continuation payoff for H at τ obtained if both
parties invest all funds from t to τ and subsequently disburse them δH-optimally.
(This is in fact a very loose upper bound, since it ignores the feasibility constraint
imposed by the spending maximum.) This continuation payoff plateaus if γ > 1, and
grows linearly in τ − t at absolute rate r if γ = 1. (See the payoff expression from
Proposition 1, substituting B(h|t)e

r(τ−t) for B.) For the difference in continuation
payoffs to be fast-growing, therefore, C(σH∗, τ) must eventually be negative and its
absolute value fast-growing.

But this is impossible, since C(σH∗, τ) is bounded below by H’s continuation
payoff at τ in the event that she minimizes BH

τ by spending as quickly as possible



102

until τ—so that
BH

τ = BH
t e(r−α)(τ−t)

—and then enjoys only Xs = xH
s (h|τ , σ

∗) for s ≥ τ , so that we ignore contributions
from L. By the homotheticity of U(·), this lower bound is proportional to u(BH

τ ).
Thus if γ = 1, this lower bound is linear in τ , and if γ > 1, this lower bound is
proportional to −e(r−α)(1−γ)τ . By α < αH and (9), r < α =⇒ (r − α)(1− γ) < δH .

So σH∗ is a best response to σL∗ given any value of γ.

Open-loop schedule

By (i), the proof that σL∗ is a best response to σH∗ also serves as a proof that, in
the open-loop setting, xL is a best response to xH . The proof that, given σL∗, H
weakly disprefers reallocations from σH∗ (at a node h|t) implemented within the [t, ξ)
interval also, with t = 0 and ξ = ∞, serves as a proof that, in the open-loop setting,
xH is a best response to xL.

A.8 Proof of Proposition 8

Existence and uniqueness of constrained-polarized equilibrium schedule

Let σ∗ be a strategy profile in which, at each post-announcement node h|t, for s ∈
[t, ξ(h|t)) we have

σL∗
s (h|t) = BL(h|t)αe

(r−α)(s−t), (157)

σH∗
s (h|t) =


(
BL(h|t)e

(r−α)(t∗(h|t)−t)
)
αe(r−αH)(s−t∗(h|t))

−BL(h|t)αe
(r−α)(s−t), s < t∗(h|t),

0, s ≥ t∗(h|t);

(158)

where t∗(h|t) uniquely satisfies

αH/b(h|t) = αe(α
H−α)(t∗−t) + (αH − α)e−α(t∗−t) (159)

(or equals ∞ if BL(h|t) = b(h|t) = 0, or if α = αH).
To verify that there is a t∗(h|t) ≥ t satisfying (159) if b(h|t) > 0 and α < αH ,

observe that the right-hand side of (159) equals αH at t∗ = t and that, given αH > α,
it rises without bound as t∗ → ∞. To verify that t∗(h|t) is unique, observe that the
derivative of the right-hand side of (159) equals 0 at t∗ = t and is positive at t∗ > t.

Equality (159), and t∗(h|t) = ∞ given b(h|t) = 0 or α = αH , is derived by setting

BH(h|t) =

∫ t∗(h|t)

t

e−r(s−t)σH∗
s (h|t)ds,

so that H precisely exhausts her budget at t∗(h|t).
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Observe that

i. by (157), xL((σH , σL∗)) is independent of σH ;

ii. by (158), σ∗ implements the δH-optimal allocation of resources spent across
[t, t∗(h|t)); and

iii. by (158), lims→t∗−(h|t) x
H
t (σ

∗) = 0.

So any alternative schedule for H either would sub-optimally allocate her resources
weakly before t∗(h|t) or would shift some of her resources from weakly before t∗(h|t) to
times on or after t∗(h|t) which, because αH ≥ α and X is continuous at t∗(h|t), offer
weakly lower δH-discounted marginal utility. It follows that σH∗ is a best response
to σL∗, and that for any constrained-polarized equilibrium σ, x(σ) = x(σ∗).

As with the unconstrained game of Proposition 5, the constrained game is continuous
at infinity iff γ < 1. In this case, to prove that σL∗ is a best response to σH∗, we can
use the one-shot deviation principle. Let h|t be a post-announcement node and let
ξ ≡ ξ(h|t). By a proof precisely analogous to that in the case of a spending minimum
(see Appendix A.8), deviation by L at h|t to a strategy implementing an alternative
path of xL until ξ must shift resources from all times on and after ξ to some times
before ξ, and may also shift resources from later to earlier periods within [t, ξ); and
both effects lower L’s payoff. If γ < 1, this completes the proof that σL∗ is a best
response to σH∗.

If γ ≥ 1, the proof that σL∗ is a best response to σH∗ is, for the first two
paragraphs, identical to the proof that σH∗ is a best response to σL∗ in the case of
a spending minimum (where σ∗ is defined as in Appendix A.8), with the L and H
indices reversed. Here, to disprove that C(σL∗, τ) is negative and fast-growing, let

Bi
τ ≡ Bi(x|τ (h|t, (σ

H∗, σ̃L))),

and observe that C(σL∗, τ) is bounded below both by

• L’s continuation payoff at τ if he allocates BL
τ δL-optimally from τ onward in

the absence of H, which is given by (32), and by

• L’s continuation payoff at τ if H allocates BH
τ δH-optimally from τ onward in

the absence of L, which is given by UδL(B
H
τ , αH) as defined by (33).

As in the proof that a polarized equilibrium exists in the unconstrained setting
(Appendix 5), this in turn implies for any γ ≥ 1 that BL

τ and BH
τ (and thus also

Bτ ) are asymptotically bounded above by an expression that declines to zero quickly
enough that limτ→∞ e−δL(τ−t)C(σ̃L, τ) cannot feasibly exceed −∞. This contradicts
the assumption that σ̃L is a profitable deviation from σL∗.
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Open-loop schedule

By (i), the proof that σH∗ is a best response to σL∗ also serves as a proof that, in
the open-loop setting, xH is a best response to xL. The proof that, given σH∗, L
weakly disprefers reallocations from σL∗ (at a node h|t) implemented within the [t, ξ)
interval also, with t = 0 and ξ = ∞, serves as a proof that, in the open-loop setting,
xL is a best response to xH .

A.9 Proof of Proposition 9

Existence and uniqueness of constrained-polarized equilibrium schedule

Suppose that, at each post-announcement node h|t, the players’ spending plans follow

xH
s = BH(h|t)αe

(r−α)(s−t),

xL
s = BL(h|t)αe

(r−α)(s−t).

Denote these spending plans {xi(h|t)}.
Any feasible deviation by H from to a strategy implementing xH ̸= xH(h|t),

following any node, shifts H’s resources from earlier to later times—in the sense of
(154)–(156) and the surrounding discussion—without affecting xL = xL(h|t). From
the X(h|t) baseline, increases in allocations to later times offer lower δH-discounted
marginal utility than increases in allocations to earlier times—

s2 > s1 =⇒ e−(r−δH)(s2−t)u′(Xs1
(h|t)

)
≤ e−(r−δH)(s1−t)u′(Xs2

(h|t)
)

—since the growth rate of X is everywhere a weighted average of r − α and r − α,
which weakly exceeds r − αH . The deviation thus lowers H’s payoff.

Fixing xH = xH(h|t), any feasible deviation by L likewise only shifts resources
from later to earlier times and, since a weighted average of r − α and r − α is
everywhere weakly less r − αL, lowers L’s payoff.

Given existence, uniqueness here follows immediately from the definition of con-
strained polarization.

Open-loop schedule

Since the above applies to any h|t, including h|t = ∅, x is also an equilibrium of the
open-loop game.

A.10 Proof of Proposition 10

Assume throughout that spending minima and maxima satisfy (23).
Given a spending rate α (α), define δ (δ) as the time preference rate for which

the corresponding spending rate is optimal, as in (34).
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Bounded WTP for H given both constraints

H’s payoff given a spending minimum α ≥ αL only, UH(x[BH , BL, α,∞]), is less
than

UδH (B
L, α) +

(
BLα

)−γ
BH .

This is the payoff she receives from L spending BL at rate α, as he does under xL,
plus the payoff-increase implied if she could spend all of BH at time zero, when
the δH-discounted marginal utility to resource allocations is highest from the xL

baseline, without confronting the diminishing marginal utility to her own spending.
Then substituting BH(1 − w) for BH and using the explicit expression for UδH (·)
from (33), we have

UH
(
x[BH(1− w), BL, α,∞]

)
< UδH (B

L, α) +
(
BLα

)−γ
BH(1− w)

=

(
BL
)1−γ

1− γ

α1−γ

α + δH − δ
+
(
BLα

)−γ
BH(1− w), γ ̸= 1; (160)

=
δH ln

(
BLδ

)
+ r − δ

δH2
+
(
BLδ

)−1
BH(1− w), γ = 1.

H’s payoff given spending minimum α ≥ αL and spending maximum α ≤ αH ,
UH(x[BH , BL, α, α]), is weakly greater than UδH (B,α)—the payoff she receives when
the collective budget B is spent at rate α—since given xL, she can achieve this payoff
by choosing xH

t = BHαe(r−α)t. We thus have

UH(x[BH , BL, α, α]) ≥ UδH (B,α)

=
B1−γ

1− γ

α1−γ

α + δH − δ
, γ ̸= 1; (161)

=
δH ln

(
Bδ
)
+ r − δ

δH2
, γ = 1.

Solving for the w∗ such that (160)=(161) at w = w∗ yields

w∗(b) = 1− bγ − b

1− b

1

1− γ

α

α + δH − δ
, γ ̸= 1; (162)

= 1 +
b

1− b

ln(b)

δH
, γ = 1.

For the γ ̸= 1 case, by (18) and (9), α ∈ [αL, αH ] implies that α + δH − δ > 0.
Also, since b ∈ (0, 1), (bγ − b)/(1 − γ) > 0: the numerator and denominator are
both positive if γ < 1 and both negative if γ > 1. This establishes that w∗(b) < 1
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for b ∈ (0, 1). Observe also that w∗(·) is continuous in b, with w∗(0) = 1 and, by
L’Hôpital’s Rule,

lim
b→1−

bγ − b

1− b
= 1− γ =⇒ lim

b→1−
w∗(b) = 1− α

α + δH − δ
< 1.

For the γ = 1 case, since b ∈ (0, 1), ln(b) < 0. Also, δH > 0 by (9). So
w∗(b) < 1. Observe again that w∗(·) is continuous in b, with limb→0+ w∗(b) = 1
and limb→1− w∗(b) = 1− δH < 1 by L’Hôpital’s Rule.

Since increases in H’s budget continuously strictly increase xH early in time
without affecting xL, UH

(
x[BH(1−w), BL, α,∞]

)
continuously strictly decreases in

w. Also,
UH
(
x[BH , BL, α,∞]

)
≥ UH

(
x[BH , BL, α, α]

)
,

since xL is the same in each case, and

UH
(
x[0, BL, α,∞]

)
< UH

(
x[BH , BL, α, α]

)
,

for the same reason. So, recalling that we can assume B = 1 without loss of generality
due to homotheticity, there is a unique wH(b) ∈ (0, 1) such that

UH
(
x[(1− b)(1− wH(b)), b, α,∞]

)
= UH

(
x[(1− b), b, α, α]

)
.

Then by (160)–(162),

UH
(
x[(1− b)(1− w∗(b)), b, α,∞]

)
< UH

(
x[(1− b), b, α, α]

)
.

So wH(b) < w∗(b) < 1 for all b ∈ (0, 1). Since w∗(b) is continuous and
limb→1− w∗(b) < 1, it only remains to show that limb→0+ wH(b) < 1.

To do this, observe that

UH
(
x[BH(1− w),BL, α,∞]

)
≤ UδH

(
BH(1− w) +BL, αH

)
=

(
BH(1− w) +BL

)1−γ

1− γ

(
αH
)−γ

, γ ̸= 1; (163)

=
δH ln

(
(BH(1− w) +BL)δH) + r − δH

δH2
, γ = 1,

with the first weak inequality following from the fact that the right-hand side is the
maximum utility achievable for H with collective budget BH(1− w) + BL. Solving
for the w̃ such that (163)=(161) at w = w̃ yields

w̃(b) =
1

1− b

αHη − α

αHη
, (164)

where η equals (8) with αH , δH , α, δ in place of α, δ, α̃, δ̃.
As above, we must have wH(b) < w̃(b) < 1 for all b ∈ (0, 1). Since w̃(b) is

continuous and w̃(0) < 1, limb→0+ wH(b) < 1, as desired. So supbw
H(b, α, α) < 1

given α ≥ αL and α ≤ αH .
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Bounded WTP for H given spending maximum only

Given B = 1, H’s payoff in the absence of constraints, after foregoing fraction w of
her budget, can be found analytically:

UH
(
x∗[(1− b)(1− w), b]

)
=

∫ ∞

0

e−δH tu
(
x∗
t [(1− b)(1− w), b]

)
dt

=
b1−γ

1− γ

(
αL
)−γ
(
1 +

(1− b)(1− w)αH

bαL
η
)−γ(1− b

b
ηγ +

αL

αL + δH − δL

)
, γ ̸= 1;

=
1

δH

(
ln
(
bδL
(
1 +

(1− b)(1− w)αH

bαL
η
))

+
r − δL

δH

)
, γ = 1, (165)

where η equals (8) with αH , δH , αL, δL in place of α, δ, α̃, δ̃.
H’s payoff given spending maximum α ≤ αH only is weakly greater than the

payoff she receives when the collective budget B = 1 is spent at rate αL (with
equality only when b is sufficiently large: see (22)):

UH(x[1− b, b, 0, α]) ≥ UδH (1, α
L). (166)

Solving for the w∗ such that (165)=UδH (1, α
L) at w = w∗ yields

w∗(b) = 1− αL

αHη
< 1, (167)

independent of b.
UH
(
x∗[(1 − b)(1 − w), b]

)
strictly and continuously decreases in w, since

∂UH(x∗[BH , BL])/∂BH > 0 everywhere (see (118)).

UH(x∗[1− b, b]) > UH
(
x[1− b, b, 0, α]

)
,

by Proposition 4 and the fact that xL is a best response to xH even in the absence
of constraints (see Appendix A.7), so that there would be alternative equilibrium of
the Stackelberg game (with xH = xH) if the inequality above failed. Finally,

UH(x∗[0, b]) < UH
(
x[1− b, b, 0, α]

)
,

since x∗[0, b] = x[0, b, 0, α] is the δL-optimal schedule given collective budget b, and
xt[B

H , b, 0, α] strictly increases in BH for all t. So there is a unique wH(b) ∈ (0, 1)
such that

UH(x∗[(1− b)(1− wH(b)), b]) = UH
(
x[1− b, b, 0, α]

)
.

Then by (166)–(167),

UH(x∗[(1− b)(1− w∗(b)), b]) ≤ UH
(
x[1− b, b, 0, α]

)
.

So wH(b) ≤ w∗(b) < 1 for all b ∈ (0, 1), and wH(b) is bounded below 1 as b approaches
0 or 1. So supbw

H(b, 0, α) < 1 given α ≤ αH .
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Unbounded WTP for L given both constraints

Assume that b < 1− αL/α, so that t
∗ ≡ t

∗
[1− b, b(1−w)] > 0 for all w ∈ [0, 1) (see

(21) and the discussion around (22)).

Given B = 1 and a spending maximum α ≤ αH only, L’s payoff after foregoing
fraction w of his budget can be found analytically:

UL
(
x[(1− b), b(1− w), 0, α]

)
=

∫ t
∗

0

e−δLtu
(
(1− b)αe(r−α)t

)
dt

+

∫ ∞

t
∗
e−δLtu

((
(1− b)e(r−α)t

∗
+ b(1− w)ert

∗)
e(r−αL)(t−t

∗
)
)
dt

=

(
(1− b)α

)1−γ

1− γ

( 1

α + δL − δ
+
( 1

αL
− 1

α + δL − δ

)( 1− b

b(1− w)

α− αL

αL

)−α+δL−δ
α
)
, γ ̸= 1;

(168)

=
1

δL

(
ln
(
(1− b)δ

)
+

r − δ

δL
+
( 1− b

b(1− w)

)− δL

δ
(δ − δL

δL

) δ−δL

δ
)
, γ = 1.

Observe that, by (9) and (18), α + δL − δ > 0.

Let t̃(b) ≡ − ln(b)z, where

z ≡


δ−δL

2α(δ−α−δL)
, α < δ − δL;

1, α = δ − δL;

∞, α > δ − δL.

(169)

L’s payoff given both spending minimum α ≥ αL and spending maximum α ∈
(αL, αH ] can be upper-bounded by the sum of the following three terms. First, as a
baseline, is the payoff he receives from H’s schedule xH in isolation:

UδL(1− b, α) =
(1− b)1−γ

1− γ

α1−γ

α + δL − δ
, γ ̸= 1; (170)

=
δL ln

(
(1− b)δ + r − δ

)
δL2

, γ = 1.

Second is the additional payoff he would receive from his own spending from t = 0
to t̃(b) if this spending confronted no diminishing marginal utility, so that each unit
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spent at t offered u′(xH
t ) units of flow utility:∫ t̃(b)

0

e−δLtbαe(r−α)t
(
(1− b)αe(r−α)t

)−γ
dt

= bα
(
(1− b)α

)−γ 1

α + δL − δ

(
1− b−(δ−α−δL)z

)
. (171)

Third is the additional payoff he would receive from the present value of his budget
not spent before t̃(b), i.e. be−αt̃(b), if it were feasible for him to spend it subject
to no constraints and subject to no diminishing marginal utility from L’s own other
spending. This can be found by subtracting UδL(1−b, α) from (168) and substituting
e−αt̃(b) for 1− w in the remainder to get, for all γ,

α1−γ

α + δL − δ

(α− αL

αL

) δ−δL

α (1− b)
δ−δL−γα

α b(1+αz)α+δL−δ
α . (172)

Denote the sum of (170)–(172) by ŨL(b), so that

UL
(
x[1− b, b, α, α]

)
≤ ŨL(b), (173)

and let w∗(b) denote the value of w such that (168)=ŨL(b) at w = w∗(b):

w∗(b) = 1−
(
(α + δL − δ)

( αL

α− αL

) δ−δL

α
(1− b)

α+δL−δ
α (174)

(α((1− b)α
)−γ

α + δL − δ

(
b

δ−δL

α − b
δ−δL

α
−(δ−α−δL)z

)
+

α1−γ

α + δL − δ

(α− αL

αL

) δ−δL

α (1− b)
δ−δL−γα

α b(1+αz)α+δL−δ
α

)) α

α+δL−δ

limb→0w
∗(b) = 1 under all conditions.

Recall that wL(b, α, α) is the value of w such that

UL
(
x[1− b, b(1− w), 0, α]

)
= UL

(
x[1− b, b, α, α]

)
.

wL(b, α, α) ∈ (0, 1) is defined by the facts that

UL
(
x[1− b, b, 0, α]

)
> UL

(
x[1− b, b, α, α]

)
(since L can implement x[1− b, b, α, α] in the presence of a spending maximum but
no minimum, in the open-loop setting, but prefers not to (see Appendix A.7)); that

UL
(
x[1− b, 0, 0, α]

)
< UL

(
x[1− b, b, α, α]

)
;

and that UL
(
x[1− b, b(1− w), 0, α]

)
strictly and continuously decreases in w.

Furthermore by (173) wL(b, α, α) ≥ w∗(b) for all b. So limb→0w
L(b, α, α) = 1.
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Unbounded WTP for L given spending minimum only

Given B = 1, L’s payoff in the absence of constraints, after foregoing fraction w of
his budget, can be found analytically:

UL
(
x∗[1− b, b(1− w)]

)
=

∫ ∞

0

e−δLtu
(
x∗
t [1− b, b(1− w)]

)
dt

=
1

1− γ

[(
(1− b)αH + b(1− w)αL/η

)1−γ

αH + δL − δH

(
1−

(
b(1− w) +

(1− b)αH

αL
η
)−αH+δL−δH

αH

·
(
b(1− w)

)αH+δL−δH

αH

)
+ (αL)−γ

(
b(1− w) +

(1− b)αH

αL
η
)−γ αL

αH (
b(1− w)

)αH+δL−δH

αH

]
, γ ̸= 1;

=
1

δL

[
ln
(
(1− b)δH +

b(1− w)δL

η

)
+

r − δH

δL
(175)

+
(δH − δL)2

δHδL

(
b(1− w) +

(1− b)δH

δL
η
)− δL

δH
(
b(1− w)

) δL

δH

]
, γ = 1,

where η equals (8) with αH , δH , αL, δL in place of α, δ, α̃, δ̃.

In the presence of a spending minimum α only, the collective spending rate at time
0—X0—is weakly less than αH , the spending rate at time 0 that H implements if
the entire collective budget is hers. (If it were greater, then because X grows at rate
r − αH until t∗ ≤ ∞ and then grows at r − α ≥ r − αH , X would be unaffordable.)
Thus we also have t̃[b] ≥ t∗[b], where

t̃[b] ≡ ln
(αH

bα

)/
(αH − α)

denotes the regime-change time t at which αHe(r−αH)t = bαe(r−α)t.
So given spending minimum α only, L’s payoff is weakly less than ŨL(b), where

ŨL(b) denotes the payoff he receives ifXt = αHe(r−αH)t for t ∈ [0, t̃[b]) and = bαe(r−α)t

for t ∈ [t̃[b],∞).
We will assume in the expression below that α < αH . We can ignore the α = αH

case because, for any b > 0,

UL
(
x[1− b, b, αH ,∞]

)
< UL

(
x[1− b, b, α,∞]

)
∀α < αH :

this follows from the fact that in the constrained open-loop setting with α < αH

it is feasible for L, given xH = xH , to implement the δH-optimal allocation of the
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collective budget, but he prefers not to do so (see Appendix A.8). We can thus upper-
bound UL

(
x[1−b, b, αH ,∞]

)
by the expression below for any choice of α ∈ (αL, αH).

UL
(
x[1− b, b, α,∞]

)
≤ ŨL(b) (176)

=
1

1− γ

( (
αH
)1−γ

αH + δL − δH

(
1−

( bα

αH

)αH+δL−δH

αH−α
)
+

(
αH
)1−γ

α + δL − δ

( bα

αH

)αH+δL−δH

αH−α
)
, γ ̸= 1;

(177)

=
1

δL

(
ln
(
δH
)
+

δH − δ

δL

( bδ

δH

) δL

δH−δ
+

r − δH

δL

)
, γ = 1.

Let w∗(b) denote the value of w ∈ (−∞, 1) such that (175)=(177) at w = w∗(b).
w∗(b) is defined, since UL(x∗[1 − b, b(1 − w)]) strictly and continuously decreases
in w from the supremum feasible payoff at w = −∞ (∞ if γ ≤ 1, 0 if γ > 1) to
UδL(1 − b, δH) at w = 1, and (177) is greater than UδL(1 − b, αH). Furthermore,
there cannot be a sequence bn → 0 with limn→∞ bn(1− w∗(bn)) = b > 0, because by
the continuity of UL(x∗[BH , BL]) in both budgets and the continuity of ŨL(b), this
would imply

UL
(
x∗[1, b]

)
= ŨL(0),

but ŨL(0) = UL(x∗[1, 0]) = UδL(1, α
H), and UL(x∗[BH , BL]) strictly increases in BL

(see Appendix A.5: Final period: Unique equilibrium schedule given placement of
first announcement). So limn→∞ bn(1− w∗(bn)) = 0.

To find w∗(b), set (175) = (177) and subtract UδL(1, α
H) from both sides. If

α ≤ δH − δL, divide both sides by b
αH+δL−δH

αH−α and simplify to get

1

αH + δL − δH

((
(1− b)αH + b

(
1− w∗(b)

)αL

η

)1−γ

− αH

)
b
−αH+δL−δH

αH−α

+
(
αL
)−γ
(
1− αL

αL + δH − δL
αH

αH + δL − δH

)
b
−αH+δL−δH

αH
α

αH−α
(
1− w∗(b)

)αH+δL−δH

αH

=
( 1

α + δL − δ
− 1

αH + δL − δH

)
(αH)

−α+δL−δ

αH−α , γ ̸= 1;(
ln
(
(1− b)δH +

b
(
1− w∗(b)

)
δL

η

)
− ln(δH)

)
b
− δL

δH−δ

+
(δH − δL)2

δHδL

(
b
(
1− w∗(b)

)
+

(1− b)δH

δL
η
)− δL

δH

b
− δL

δH
δ

δH−δ
(
1− w∗(b)

) δL

δH

= (δH − δ)
( δ

δH

) δL

δH−δ
, γ = 1.

In each case, given α ≤ δH − δL, the exponent on b in the first term is greater than
−1. So the limit of the first term as b → 0 is finite, regardless of w∗(·), by L’Hôpital’s
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Rule. The coefficient to the left of the b in the second term is nonzero by (18). So,
from the second term, unless limb→0w

∗(b) = 1, the limit of left-hand side as b → 0
is not a finite constant, as the right-hand side is.

If α > δH − δL, instead divide both sides by b—i.e. multiply the expression above

by b
αH+δL−δH

αH−α
−1
. Note that if α > δH−δL, the exponent on b on the right-hand side is

now positive, so the limit of the right-hand side as b → 0 is zero. Here the limit of the
first term on the left-hand side as b → 0 is finite, regardless of w∗(·), by L’Hôpital’s
Rule, and limit of the second term is defined and finite only if limb→0w

∗(b) = 1.
So limb→0w

∗(b) = 1.

Recall that wL(b, α,∞) is the value of w such that

UL
(
x∗[1− b, b(1− w)]

)
= UL

(
x[1− b, b, α,∞]

)
.

wL(b) is defined and less than 1 by the reasoning following (177), noting that
UL
(
x[1 − b, b, α,∞]

)
too is greater than UδL(1 − b, αH). Then by (176) and the

fact that UL(x∗[1− b, b(1− w)]) decreases in w, wL(b, α,∞) ≥ w∗(b) for all b.
So limb→0w

L(b, α,∞) = 1.

A.11 Proof of Proposition 11

By (135) and the surrounding discussion, a collective schedule is efficient iff it is
a measure-zero deviation from a collective schedule X that exhausts the collective
budget and satisfies

Xt = X0e
r
γ
t
(
ae−δH t + (1− a)e−δLt

)γ
for some X0 and some a ∈ [0, 1] representing the weight placed on UH (with weight
1 − a placed on UL). The result follows from comparing this expression to the
expressions for x[α, α,BH , BL] from Propositions 5 and 7–9.

A.12 Proof of Proposition 12

Suppose {u(·)} satisfies single crossing from X, and let s < s.

∂UH(X)

∂Xs

≥
Rs

Rs

∂UH(X)

∂Xs

(178)

=⇒ ∃t̃ :
t̃−1∑
t=0

e−
∑t

q=1 δ
H
q

(∂ut(X)

∂Xs

− Rs

Rs

∂ut(X)

∂Xs

)

+
∞∑
t=t̃

e−
∑t

q=1 δ
H
q

(∂ut(X)

∂Xs

− Rs

Rs

∂ut(X)

∂Xs

)
≥ 0 (179)
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with each term in the first sum non-positive and each term in the second sum non-
negative, by (25), and at least one term in the second sum positive, by (26).

If (179) holds for t̃ = 0, then we immediately have

∞∑
t=t̃

e−
∑t

q=1 δ
L
q

(∂ut(X)

∂Xs

− Rs

Rs

∂ut(X)

∂Xs

)
> 0

=⇒ ∂UL(X)

∂Xs

>
Rs

Rs

∂UL(X)

∂Xs

. (180)

Otherwise, since e
∑t

q=1(δ
H
q −δLq ) − 1 equals 0 at t = 0 and strictly increases in t, (179)

implies

t̃−1∑
t=0

(
e−

∑t
q=1 δ

L
q − e−

∑t
q=1 δ

H
q

)(∂ut(X)

∂Xs

− Rs

Rs

∂ut(X)

∂Xs

)

+
∞∑
t=t̃

(
e−

∑t
q=1 δ

L
q − e−

∑t
q=1 δ

H
q

)(∂ut(X)

∂Xs

− Rs

Rs

∂ut(X)

∂Xs

)
≥ (181)

t̃−1∑
t=0

(
e
∑t̃

q=1(δ
H
q −δLq ) − 1

)
e−

∑t
q=1 δ

H
q

(∂ut(X)

∂Xs

− Rs

Rs

∂ut(X)

∂Xs

)

+
∞∑
t=t̃

(
e
∑t̃

q=1(δ
H
q −δLq ) − 1

)
e−

∑t
q=1 δ

H
q

(∂ut(X)

∂Xs

− Rs

Rs

∂ut(X)

∂Xs

)
≥ 0, (182)

with inequality (181) holding strictly unless the difference in derivatives equals zero
for all t ̸= t̃, in which case inequality (182) holds strictly by (26).

So the left-hand side of (181) is positive. In conjunction with (179), this implies
(180). This proves part (a).

In the generalized open-loop game, suppose the players choose a strategy profile x
such that xH

s > 0, xL
s > 0 for s > s. Then either (178) holds, or H can increase her

payoff by shifting her resources marginally from s to s. If (178) holds, then by part
(a), (180) holds, so L can increase his payoff by shifting his resources marginally
from s to s. In either case, x is not an equilibrium. This proves part (b).
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