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curs. First, acceleration decreases the time spent at each technology level.
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1 Introduction

Technology brings prosperity. On the other hand, some technological developments
have arguably raised, or would raise, existential risk : the risk of human extinction or
of an equally complete and permanent loss of human welfare.1

This raises a possible tradeoff: concern for the survival of civilization may motivate
slowing development. Environmentalist sentiments along these lines go back at least
to the Club of Rome’s 1972 report on the “Limits to Growth”, and have arguably
reemerged with calls to pause AI development (Future of Life Institute, 2023). Jones
(2024) explores how to trade off between AI development and AI risk, assuming the
tradeoff exists.

Even if some technological developments directly raise existential risk, however,
others may directly lower it. Advances in game theory may render us less vulnerable to
nuclear war; vaccines render us less vulnerable to plagues. The prosperity technology
brings can also lower existential risk indirectly, by increasing a planner’s willingness
to pay for safety. This paper offers an argument that these salutary possibilities
probably dominate in the long run, and that the proposed tradeoff is thus typically
illusory. That is, concern for long-term survival should typically motivate speeding
rather than slowing technological development.

We begin in Section 2 with a simple model in which the hazard rate—the probability
of catastrophe per period—is a positive function of the technology level. Here, an
existential catastrophe must occur unless higher technology levels carry hazard rates
that eventually fall toward zero.

In this setting there are only two possibilities. If advanced technology does not
eventually drive the hazard rate toward zero, then a catastrophe is inevitable, so
accelerating technological development cannot increase its probability. Otherwise, a
catastrophe is avoidable, and acceleration can lower its probability by hastening the
arrival of safety.

This simple model formalizes two observations. First, if we believe the hazard
rate is currently high, our only hope for a long future is the hope that we are in
a temporary “time of perils”. This view was famously expressed by Sagan (1997),
and its implications for those especially concerned about the long-term future are
emphasized by Parfit (1984), Ord (2020), and others. The second observation is less
widely appreciated: that if we are in a time of perils, with the hazard rate a positive
function only of the technology level, then deceleration for the sake of long-term
survival is misguided. Speeding technological development may be temporarily risky,

1See e.g. Bostrom (2002), Posner (2004), Farquhar et al. (2017), Ord (2020), and Jones (2024).
We will refer to the event that humanity immediately goes extinct or suffers a similarly complete
and permanent loss of welfare as an “existential catastrophe”, or simply “catastrophe”. We will
refer to “humanity” and “human civilization” interchangeably.
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but in this setting it must be safer in the long run.2

The model of Section 2 is not “economic”. It studies the impact on risk of quickly
escaping risky states, not optimal policy under constraints. It thus leaves open the
possibility that, when consumption–risk tradeoffs are navigated by a planner with
little concern for long-term survival, technological acceleration can increase risk after
all. Section 2 also offers no reason to believe that future states will be safe. If one
believes that technology has historically increased the hazard rate, the hope that
this relationship will reverse in the future may seem naive. As Thorstad (2022)
emphasizes, the “time of perils hypothesis” has to date largely been asserted without
strong defense.3

Section 3 therefore introduces an environment in which technology grows exoge-
nously and its risks can be mitigated by policy. As dangerous new technologies are
introduced, a planner, discounting the future at an arbitrary rate, decides how much
consumption to sacrifice to lower the hazard rate. We illustrate that, even if tech-
nological advances always directly raise the hazard rate, optimal policy can generate
an “existential risk Kuznets curve”, with the hazard rate rising and then falling as
technology advances. Early, when the expected discounted value of the future of civ-
ilization is low and the marginal utility of consumption is high, it is worthwhile to
adopt risky technologies as they arrive. Later, when the discounted future is more
valuable and the marginal utility of consumption has fallen, substantial risk mitiga-
tion becomes worthwhile.

The possibility of rational policy thus offers an economic justification for the view
that we may indeed be living through a once-in-history time of perils. Safety is a
luxury. Technological development generates a wealth effect. If the utility function
is concave enough—i.e. the wealth effect strong enough—optimal policy lowers the
hazard rate quickly enough that the probability of long-term survival is positive.
This insight mirrors the logic of Stokey (1998) and Brock and Taylor (2005), on
which environmental damages rise and then fall with economic development, and of
Jones (2016, 2024), on which growth increases the value of life relative to marginal
consumption. Like the analysis presented here, these papers find that, given a concave
enough utility function, enrichment motivates large reallocations from consumption
to safety. None of these sources solve for the optimal path of a hazard rate over time,
however, or characterize conditions under which the probability of a binary event
(here, existential catastrophe) under optimal policy is less than 1.4

2The point is however noted informally by Bostrom (2014), p. 234, and recently by Ord (2024).
3As of the time of this writing, Thorstad cites an earlier draft of this paper as an example of an

argument for the hypothesis, but criticizes the model offered in that draft. We believe the model in
the current paper is robust to this criticism.

4Our model of catastrophic risk differs more significantly from those of Martin and Pindyck
(2015, 2021) and Aurland-Bredesen (2019). That literature studies a society’s willingness to pay to
reduce the risk of catastrophes that are, or are equivalent to, proportional consumption cuts. In
such a context there are no wealth effects: the fraction of consumption one is willing to sacrifice to
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Relative to the model of Section 2, optimal policy tends to magnify the extent to
which technological acceleration decreases long-term risk, for two reasons:

1. As in the policy-free model, acceleration decreases the time spent in any given
risky state. Under optimal policy, however, the wealthier future states pulled
forward by an acceleration are systematically inclined to be safer, due to the
wealth effect.

2. Given an increase to the future growth rate, even before actual productive
capacity has yet increased, the anticipation of a more valuable future motivates
more stringent safety policy in the present.

Sections 2 and 3 explore models in which the state of technology at a given time
contributes to the hazard rate. Section 4 considers the possibility that risk is “tran-
sitional”, increasing in the rate of technological development.

Absent policy, the effect of acceleration on long-term transition risk is ambiguous.
In particular, acceleration has no effect on long-term risk if the “experiment” associ-
ated with developing a given technology poses a risk independent of how many exper-
iments happen concurrently. This is the assumption of e.g. Jones’s (2016) “Russian
roulette” model of risky technological development. If the future contains a sequence
of experiments, each of which will pose some risk of catastrophe, then stagnation can
lower risk by avoiding advanced experiments altogether; but an acceleration that only
pulls forward their date leaves the probability of catastrophe unchanged.

As in Section 3, introducing an optimal policy response facilitates survival due
to wealth effects, potentially replacing an ever-increasing hazard rate with a Kuznets
curve. Also, though the effect of acceleration on long-term transition risk remains
ambiguous given policy, policy can shift the conditions under which acceleration has
a given effect on risk. At least in the particular model of transition risk studied in
Section 4, the existence of a policy response significantly widens the conditions under
which acceleration lowers transition risk.

Section 5 summarizes these analyses and their limitations.

avoid a proportional consumption cut is, by definition, independent of one’s consumption.
This analysis might better be compared with that of Baranzini and Bourguinion (1995). Baranzini

and Bourguinion find conditions under which the growth path that maximizes expected discounted
utility also minimizes the probability of existential catastrophe. In our model these objectives
never perfectly align, but we explore how technological advances, when regulated with a view to
maximizing expected discounted utility, can lower the probability of existential catastrophe.
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2 State risk without policy

2.1 Model

The hazard rate — The “hazard rate” δt is the flow probability at t of anthropogenic
existential catastrophe. In this section we posit that it is a positive, continuous
function of a state variable At:

δt = δ(At), δ(A) > 0 ∀A.

Assume that A(·) is differentiable, with a positive derivative, and that it increases
without bound.

We will refer to the state variable as “technology”, in acknowledgment of the view
that technological developments, broadly construed, are the primary determinants of
changes in the hazard rate. In this model, therefore, we proceed through a sequence
of overall technology states. A given state may have both risk-inducing features, such
as a widespread ability to engineer pathogens, and risk-mitigating features, such as
the ability to easily detect novel diseases, develop vaccines, or implement quarantines.
If the “technologies” developed over the period after a state At on balance raise the
hazard rate, δ(At+1) > δ(At). If on balance they lower it, δ(At+1) < δ(At).

Survival — The probability that civilization survives to date t is given by

St ≡ e−
∫ t
0 δsds ⇐⇒ Ṡt = −δtSt, S0 = 1.

The probability that human civilization avoids a catastrophe and, at least in expec-
tation, enjoys a long and flourishing future5 is

S∞ ≡ lim
t→∞

St = e−
∫∞
0 δsds. (1)

We will refer to {δt}∞t=0 as the hazard curve, to the area under the hazard curve∫∞
0

δtdt as cumulative risk, and to S∞ as the probability of survival.
Note that the probability of survival decreases in cumulative risk, and survival is

possible (S∞ > 0) iff cumulative risk is finite. Existential catastrophe is not guaran-
teed only if, roughly, the world is on track eventually to grow ever safer.

5In the face of natural existential risk, this will entail succumbing to a natural existential catas-
trophe instead. From very-long-run historical data on large-scale natural catastrophes, and the
typical survival rate of other mammalian species, Snyder-Beattie et al. (2019) estimate that human-
ity’s natural existential hazard rate is below one in 870,000 per year. Throughout this paper we
ignore the possibility that technological advances may mitigate natural existential risks. Accounting
for this possibility would only strengthen the headline results.
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2.2 How does acceleration affect risk?

We will now consider how accelerating the overall technology path affects cumulative
risk. Importantly, in practice, we may often be able to accelerate or delay particular
technologies in isolation. Supporting vaccine technologies while discouraging tech-
nologies that facilitate engineering pathogens may well lower existential risk from
pandemics more than speeding or slowing research across the board. Such consid-
erations are discussed in Section 3.1. Here, however, we begin by fixing a path
and studying the implications of faster movement along it.

Absent a negative shock severe enough to induce stagnation or recession, technol-
ogy crosses every value from A0 to ∞ exactly once. So the area under the hazard
curve can be found by integrating with respect to technology instead of time:∫ ∞

0

δ(At)dt =

∫ ∞

A0

δ(A)
(dA
dt

)−1

dA =

∫ ∞

A0

δ(A)Ȧ−1
A dA, (2)

where, somewhat abusing notation, ȦA denotes the value of Ȧ when the technology
level equals the subscripted A. This change of variables makes it easier to see how
various shocks to the growth path affect cumulative risk.

Instantaneous level effects — Consider a shock to the technology level for a short
period beginning at t, so that the technology level over this period is approximately
Ã rather than At (and the subsequent technology path is unchanged). The sign of
the impact of this shock on cumulative risk depends on whether δ(Ã) is greater or
less than δ(At). By the leftmost integral of (2), the impact on cumulative risk per
unit time of this shock to the technology level at t equals

δ(Ã)− δ(At).

Instantaneous accelerations —Consider the impact on cumulative risk per unit time of
an instantaneous shock to technology growth at t, so that the technology growth rate

at t is ˙̃A rather than Ȧt, and the subsequent technology growth rate at each technology
level is unchanged. By the rightmost integral of (2), the impact of this shock on
cumulative risk per unit of increase to the technology level during the acceleration is

δ(At)(
˙̃A−1 − Ȧ−1

t ). Multiplying this by the new rate of technology growth per unit
time, the impact on cumulative risk per unit time equals

−δ(At)
( ˙̃A/Ȧt − 1

)
.

Accelerations — Choose technology level A > At. Since the baseline technology path
increases continuously and without bound, A = AT for some T > t.
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Consider the effect of increasing the technology level at t from At to A and sub-
sequently maintaining the technology path As = As+(T−t) (s ≥ t). This shock to the
technology path amounts to a “leap forward in time”, cutting a slice cut out of the
hazard curve. Cumulative risk falls by∫ A

At

δ(A)Ȧ−1
A dA.

More generally, define a temporary acceleration as an increase to Ȧ at some range
of technology levels: say, from At to AT . Because the exponent on Ȧ in the integral
is negative, the acceleration lowers the risk endured at the given range of technology
levels. A discontinuous jump in the technology level amounts to raising ȦA to ∞,
and thus lowering Ȧ−1

A to 0, from A = At to AT .
A jump in the technology level from At to AT temporarily increases the hazard

rate if δ(AT ) > δ(At). Likewise, an acceleration to technology growth accelerates an
increase to the hazard rate if δ(·) is increasing around At. It may therefore appear
to contemporaries that a given permanent level effect decreases the probability of
survival. Here, that would be incorrect. If (2) is finite, the permanent level effect
decreases cumulative risk and increases the probability of survival. If (2) is infinite,
the probability of survival is zero with or without the permanent level effect.6 The
two possibilities are illustrated below.

1 2

δ(A1)

δ(A2) ←

X

t

δt

Figure 1a: X <∞;
temp. acceleration lowers X

1 2

δ(A1)

δ(A2) ←
X

t

δt

Figure 1b: X =∞;
temp. accel. has no effect on X

Define a permanent acceleration to be a permanent increase to Ȧ from some time
t—or, equivalently, some technology level At—onward. By the rightmost integral of
(2), a permanent acceleration, like a temporary acceleration, must lower cumulative
risk if cumulative risk is finite on the baseline technology path.

6
∫ AT

At
δ(At)dt is finite by the continuity of δ in A and of A in t.



7

Unlike temporary accelerations, however, permanent accelerations can render sur-
vival possible when it would otherwise be impossible. Shrinking a heavy-tailed curve
with an infinite integral can yield a thin-tailed curve with a finite integral.

To state this lesson in reverse, consider stagnation: a permanent negative accel-
eration, or “deceleration”, setting As = At for all s ≥ t. The hazard rate is then
permanently positive, and survival is impossible, even if it might have been possible
with technology growth. More concretely, consider the implications of a large nega-
tive shock today returning the world to the state it inhabited in 1924. Perhaps the
hazard rate was much lower in 1924 than today, but this reset would largely doom us
to relive the nuclear standoffs, emissions-intensive industrializations, and biotechno-
logical hazards of the past. With enough replays of the past century, a catastrophe
would presumably be inevitable.

3 State risk with policy

3.1 Motivation

The previous section shows that, under weak conditions, acceleration along a “tech-
nology path” either lowers or does not affect cumulative risk. Any optimism one might
draw from this observation about the risk implications of accelerating technological
development in practice faces two limitations.

First, cumulative risk falls only if we are already on track to eventually grow ever
safer. Because the technology path was assumed to be fully exogenous, the model
of the previous section offers no reason to believe we are. If technological progress,
broadly construed, has historically increased the hazard rate, the message of Section
2 is that those who wish to reduce existential risk should accelerate such progress on
the blind hope that the associated risk trend eventually reverses.

Second, the result only applies to a perfectly balanced acceleration in the path
of every determinant of the hazard rate. It says nothing about the implications of
pulling forward some technologies in time without equally pulling forward all others.

To illustrate the second limitation, suppose the hazard rate is a function of two
variables, A and x, and suppose the path of x is fixed:

δt = Atxt, xt = (1 + t)−2.

Here, later technology states At are always riskier on balance. xt may represent an
index of policies and tools which promote safety ever more effectively with time and
are independent the state of (acceleratable) technology. Consider an acceleration in

the technology path from At = (1 + t)k to At = (1 + t)k̃, where k < 1 < k̃. This
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acceleration increases cumulative risk from∫ ∞

0

(1 + t)k−2dt to

∫ ∞

0

(1 + t)k̃−2dt.

The former is finite, because k − 2 < −1. The latter is infinite, because k̃ − 2 > −1.
In this case, accelerating A lowers the probability of survival to zero.

At the other extreme, however, suppose that the index xt of risk-relevant features of
the world not included in a given technological acceleration is set by policy, in light
of the path of A, to optimize a tradeoff between safety and consumption. As long
as more advanced technology levels make greater consumption feasible, we will see
that optimal policy—with respect to any discount rate—generally strengthens the
conclusion that technological acceleration lowers cumulative risk.

As in the tech-only model of Section 2, survival can only be achieved by pulling
forward a future that asymptotically approaches perfect safety. Whereas the earlier
model is agnostic about whether more advanced technology will in fact carry a lower
hazard rate, however, an optimal policy response introduces a tendency for faster
technological development to carry lower risk in the long run. This is because tech-
nology increases consumption, which both decreases the utility cost of a marginal
consumption sacrifice and increases the value of life. Furthermore, the prospect of a
future acceleration now lowers the present hazard rate, because when the value of the
future is greater, it is worth sacrificing more today to prevent its ruin.

With reference to Figure 1: The first implication of optimal policy is that the
finite X case is more likely. The second is that the hazard rate now decreases in
anticipated future growth.

1 2

δ(A1)

δ(A2) ←

X

t

δt

1 2

δ(A1)

δ(A2) ←
X

t

δt

Figure 2: Optimal policy (i) facilitates finite X and
(ii) lowers the hazard rate associated with each technology

level while an acceleration is underway

These dynamics are illustrated in a simple model of technology and optimal policy
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in the rest of this section. Generalized results, not relying on functional form
assumptions, are given in Appendix B.3.

3.2 The economic environment

Technology — The maximum feasible consumption level at t equals the technology
level At. Actual consumption, Ct, is At multiplied by a policy choice xt ∈ [0, 1]:

Ct = Atxt. (3)

The tradeoff at the heart of this section is that a technologically advanced civilization
can risk self-destruction, but that this risk can be lowered at some cost to consump-
tion, as represented here by a choice of x below 1. (We denote the choice variable x to
remind the reader that higher choices of x come with higher existential risk.) Choices
of x below 1 may constitute bans on the adoption of risky production processes and/or
resource-allocations to safety-increasing services like pandemic detection.

The technology frontier A grows at a constant rate g:

Ȧt = Atg, g > 0, A0 > 1. (4)

The hazard rate — The hazard rate δt is now a function of the technology level At

and the policy choice xt ∈ [0, 1], and is increasing in xt. In this illustrative model,
the elasticities of the hazard rate in A and in x are constant:

δ(At, xt) = δ̄Aα
t x

β
t , δ̄ > 0, β > α > 0, β > 1. (5)

We impose the three inequalities of β > α > 0, β > 1 to satisfy three desiderata.7

The first is that, fixing xt > 0, δt increase in At. This imposes α > 0. The
assumption that δt increase in At is necessary if we are to concede that technological
development has historically increased the hazard rate, and that this trend would
continue absent a change in policy.8 It is thus necessary to illustrate that optimal
policy can render survival possible when it might otherwise have been impossible.

7Hazard function (5) is closely analogous to the environmental damage function of Stokey (1998).
While Stokey focuses on the implications of the damage function for the chosen path of x (or “z”
in her notation), we will study how accelerations to the path of A affect the probability of a binary
event: the occurrence of an anthropogenic existential catastrophe at any time.

8The proportion 1 − x of potential consumption sacrificed for the sake of existential safety
has only increased as technology has advanced. Ord (2020, p. 313) estimates that, as of 2020,
approximately $100M/year was spent specifically on reducing existential risk. This is likely a great
underestimate of existential safety expenditures in the sense relevant here, for two reasons. First,
explicit expenditures do not include foregone consumption due to regulatory barriers. Second, many
catastrophic risk reduction efforts are motivated both by the desire to reduce existential risks and
by the desire to reduce smaller-scale damages. By contrast, Moynihan (2020) argues that the very
concept of an anthropogenic existential catastrophe essentially did not exist 300 years ago; it appears
there were then no efforts taken to prevent one.



10

Second, the elasticity of δt with respect to xt is assumed to exceed its elasticity with
respect to At; i.e. β > α. This is equivalent to the condition that, when technology
advances, it is feasible to lower the hazard rate by retaining the former consumption
level, allocating all marginal productive capacity to safety measures. This may be
seen by substituting xt = Ct/At (from (3)) into the hazard function (5), yielding

δt = δ̄Aα−β
t Cβ

t .

Fixing C, the hazard rate falls over time iff β > α. If it is indefinitely infeasible
to lower the hazard rate while fixing consumption, as it is in this model if β ≤ α,
then an existential catastrophe is unavoidable unless consumption falls to zero. This
degrowth would amount to the destruction of civilization by other means. If β ≤ α,
therefore, speeding or slowing growth can have no impact on the probability of an
existential catastrophe broadly construed.

Third, fixing At > 0, β > 1 renders δt strictly convex in xt, so that there are
diminishing returns to safety efforts. We consider this assumption reasonable both
from first principles and from Shulman and Thornley’s (2024) estimates of the cost-
effectiveness of existential risk mitigation efforts (Appendix B.1).

Preferences — A planner maximizes expected discounted flow utility, which is a
CRRA function of consumption:∫ ∞

0

e−ρtSt u(Ct) dt; u(Ct) =

{
C1−γ

t −1

1−γ
, γ > 0, ̸= 1;

log(Ct), γ = 1.
(6)

The discount rate ρ > 0 is the sum of some rate of pure time preference and/or some
rate of natural and unavoidable existential risk.9 When γ < 1, we impose

ρ > ρ ≡ (β − α)(1− γ)

β
g (7)

to ensure the existence of an optimal policy path.
The utility of death is implicitly normalized to 0 and the death-equivalent con-

sumption level to 1. Equivalently, we are normalizing to 1 the technology level at
which, when consumption is maximized, flow utility equals 0.

Note that when γ > 1, flow utility is upper-bounded by 1
γ−1

. Accelerating con-
sumption growth, from a baseline of positive consumption growth, therefore yields a
stream of utility increases that eventually shrinks over time. Concern for the future
then clearly casts doubt on the value of speeding technological development: the con-
sumption benefits of doing so primarily accrue in the short run, whereas the costs

9One valid interpretation of these preferences is that the population is fixed and (6) is the
expected utility of a representative household. Another is that population grows exponentially at
rate n < ρ, that the rate of pure time preference and exogenous risk is in fact ρ + n, and that the
planner uses the total utilitarian social welfare function.



11

of an existential catastrophe are everlasting. By contrast, when γ ≤ 1, flow utility
can grow without bound, so accelerations to consumption growth and reductions in
existential risk can have comparable long-term benefits.

3.3 The existential risk Kuznets curve

Optimality — Summarizing Section 3.2, the planner chooses a policy path {xt}∞t=0 to
maximize expected utility (6) subject to

A0 > 1, Ȧt = gAt (g > 0),

Ct = Atxt,

S0 = 1, Ṡt = −δtSt,

δt = δ̄Aα
t x

β
t (δ̄ > 0, β > α > 0, β > 1). (8)

This section finds the path of the hazard rate in the planner’s solution. The next
section explores what this implies for the impact of acceleration on cumulative risk.

The planner faces one choice variable, xt, and one state variable, St. Her expected
flow utility at t is Stu(Ct). Her problem is represented by current-value Lagrangian

Lt = Stu(Ct) + vtṠt + µt(1− xt)

= St
(Atxt)

1−γ − 1

1− γ
− vt δ̄A

α
t x

β
t St + µt(1− xt). (9)

µt is the Lagrange multiplier on x, positive iff the xt ≤ 1 constraint binds.

vt =

∫ ∞

t

e−ρ(s−t)Ss

St

u(Cs)ds (10)

is the costate variable on survival: the expected value of civilization as of t.10

On an optimal path, the first-order condition on (9) with respect to the choice
variable xt is satisfied. Differentiating (9) with respect to xt, we have

StA
1−γ
t x−γ

t − δ̄Aα
t βx

β−1
t vtSt ≥ 0, (11)

with inequality iff the left-hand side is positive at xt = 1, in which case xt = 1 is
optimal.11 So as long as (11) is nonnegative at xt = 1, the optimal xt ∈ [0, 1] equals
1. Any consumption sacrifices would carry greater flow costs than expected benefits.
When (11) is negative at xt = 1, the optimal choice of xt is interior. It sets (11)
equal to zero, maintaining that on the margin, the loss of flow utility from lowering
consumption equals the expected benefit via risk reduction.12

10The costate variable on survival equals (10) because the value of saving the world equals the
expected value of the world. The equation is derived formally in Appendix A.1.

11The second derivative with respect to xt is negative because β > 1.
12We can ignore the possibility that optimal xt equals 0 because this yields infinite flow disutility.
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In fact there is a unique13 optimal path, characterized by (11), a first-order con-
dition corresponding to St, and identity (10) (see Appendix A.1).

Initial risk increases — (11) is nonnegative at xt = 1 iff

A
−(α+γ−1)
t ≥ δ̄βvt. (12)

The continuation value of civilization at t given survival to t, vt, strictly rises over
time. This is because, given the best paths {Cs}s≥t and {δs}s≥t achievable at a given
initial technology level At, a higher initial technology level allows for a path with
an equal hazard rate but more consumption at each future period, given β > α. A
higher initial technology level makes a preferred future feasible.

Suppose inequality (12) is satisfied strictly at t = 0. Then early in time, when At

is low, the optimal policy choice is x = 1, and the hazard rate rises at rate14

gδt = αg.

Eventual risk declines and survival — As the left-hand side of (12) falls exponentially
with At and the right-hand side rises, there is a unique time t∗ at which (12) holds
with equality. After t∗, the optimal choice of xt is interior and sets (11) equal to zero.

Setting (11) equal to zero and rearranging, we have the optimal choice of xt after
t∗, and thus the optimal choice of xt in general:

xt =

{
1, t ≤ t∗;(
δ̄βAα+γ−1

t vt
)− 1

β+γ−1 , t > t∗.
(13)

Taking growth rates, we find the growth rate of the policy variable after t∗:

gxt = −
α + γ − 1

β + γ − 1
g − 1

β + γ − 1
gvt. (14)

The hazard rate in turn grows as

gδt = αg + βgxt = −
(β − α)(γ − 1)

β + γ − 1
g − β

β + γ − 1
gvt. (15)

Finally, on an optimal path, v grows asymptotically at a constant rate, with

lim
t→∞

gvt =

{
(β−α)(1−γ)

β
g, γ < 1;

0, γ ≥ 1.
(16)

13Given semi-continuity. If path x is optimal, measure-zero deviations from x are also optimal.
14Given a time-dependent variable y, gyt ≡ ẏt/yt denotes its proportional growth rate at t.
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This is proved in Appendix A.2, but an intuition is as follows. When γ > 1, growth
in v must fall to zero because vt is upper-bounded by

v̄ ≡ 1

ρ(γ − 1)
. (17)

When γ < 1, flow utility grows approximately like C1−γ
t when Ct is large. Observe

from (10) that vt grows roughly with flow utility. Substituting gv = (1 − γ)gC =
(1− γ)(g + gx) into (15) then yields the γ < 1 case of (16).

Substituting (16) into (14) and (15) gives the asymptotic growth rates gx and gδ.
Also, since Ct = Atxt, we can easily find the asymptotic value of gC , which is always
positive. Though x falls to 0, A grows more quickly than x declines. Indeed, as
elaborated in Appendix B.3.3, consumption growth is key to the growth in sacrifices
for safety. With decreasing marginal utility to consumption and decreasing marginal
returns to sacrifices for safety, potential consumption is split between the former and
latter so that the marginal value of each stays equal.

Proposition 1. The existential risk Kuznets curve
On the path defined by (6)–(8), there is a time t∗ ≥ 0 such that for t < t∗,

xt = 1, gCt = g > 0, gδt = αg > 0;

and for t > t∗ xt is interior, such that if γ > 1,

lim
t→∞

gxt = −
α + γ − 1

β + γ − 1
g < 0, (18)

lim
t→∞

gCt =
β − α

β + γ − 1
g > 0, (19)

lim
t→∞

gδt = −
(β − α)(γ − 1)

β + γ − 1
g < 0; (20)

and if γ ≤ 1,

lim
t→∞

gxt = −
α

β
g < 0, (21)

lim
t→∞

gCt =
β − α

β
g > 0, (22)

lim
t→∞

δtt =
ρ

(β − α)g
> 0, γ = 1; (23)

δ∗ ≡ lim
t→∞

δt =
(ρ− ρ)(1− γ)

β + γ − 1
> 0, γ < 1. (24)

Proof. See Appendix A.2.

Corollary 1.1. Survival
S∞ > 0 iff γ > 1.
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Proof. The “if” follows from (20) and the definition of S∞. δt ultimately falls expo-
nentially, so

∫∞
0

δtdt <∞, so S∞ ≡ e−
∫∞
0 δtdt > 0. The “only if” likewise follows from

(23)–(24): when the hazard rate is asymptotically constant, or falls proportionally to
1/t (or more slowly), the integral of the hazard curve diverges.

Intuition for the γ = 1 threshold — The importance of γ stems from the fact that,
for the policy path to be optimal, it must maintain

a) the flow utility to proportionally increasing consumption, Ct · C−γ
t

=

b) the damage done via proportionally raising the hazard rate,
which equals the hazard rate × the value of civilization.

When the value of civilization also grows like C1−γ
t , as it does when γ < 1, the hazard

rate must be constant for (a) and (b) to grow at the same rate. When γ > 1, the
value of civilization is asymptotically constant, so the hazard rate falls like C1−γ

t .
When γ = 1, given that consumption grows exponentially, log(Ct) and thus vt grow
linearly. The hazard rate then falls proportionally to 1/t.

This result recalls the “Russian roulette” model of Jones (2016). There, optimal
policy renders catastrophe avoidable iff γ ≥ 1. Since risk in that model is posed by
the development (not existence) of technologies, it more similar to the “transition
risk” model of Section 4, and is discussed further there.

Simulation — The paths of policy and risk are simulated below, for the parameter
values listed in Table 1.

ρ 0.02 γ 1.5 g 0.02 A0 2 α 1 β 2 δ 0.00012

Table 1: Simulation parameters for Figure 3

The values of ρ, γ, and g have been chosen as central estimates from the macroe-
conomics literature.15 A0 = 2 is chosen so that the value of a statistical life-year at
t = 75 is 4x consumption per capita, roughly matching Klenow et al. (2024).16 That
is, the first year of the simulation might be taken to denote 1949, when a nuclear war
between superpowers first became possible, in which case the 75th year denotes the
present. δ̄, α, and β are chosen so that the hazard rate today is approximately 0.1%,
matching Stern’s (2007) oft-cited figure; and, for clarity in illustration, so that the

15We focus on the γ > 1 case both because it generates the important results and to match
evidence from Hall (1988), Lucas (1994), Chetty (2006), and others.

16They estimate that this ratio was roughly 5 in the United States in 2019. The figure must be
adjusted upward for economic growth since 2019, but downward insofar as we are considering optimal
policy across all countries advanced enough to be deploying existentially hazardous technology.
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hazard rate begins to fall at approximately t = 100, and so that the growth rate and
then the decay rate of the hazard rate are non-negligible.

S∞ under these parameters, from t = 75 onward, is approximately 65%.
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Figure 3: Evolution of policy and hazard along the optimal path

Calculations and code for replicating the simulation and corresponding probability
of survival may be found in Appendix D.

As Figure 3 illustrates, one potentially unappealing feature of this simple model
is that it implies that, on the optimal path, the hazard rate only rises while no
sacrifices whatsoever are made for existential safety. In this it resembles Stokey’s
(1998) “environmental Kuznets curve”, whose damages also rise exponentially with
growth and then fall sharply once it becomes optimal to take action.

As in Stokey (1998), this dynamic is driven by the lack of a lower Inada condition
on 1− x. If marginal “safety expenditures” lower the hazard rate infinitely per unit
spent at x = 1, then as long as vt > 0 it is optimal to set xt < 1, even if at first
the hazard rate is allowed to rise. Rising δ can thus be found alongside falling x by
tweaking the hazard function around x = 1. Such tweaks do not affect the long-run
behavior of policy or risk as given by (18)–(20), which are set by the shape of the
hazard function around x = 0. This is discussed further in Appendix B.4.1.
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3.4 Acceleration and state risk

As in the tech-only model of Section 2, the impact on cumulative risk of a temporary
shock is ambiguous, but the impact of an acceleration—e.g. a permanent level or
growth effect—is always weakly to lower cumulative risk.

Preliminaries — Let A(·) denote the baseline technology path, given by (4). Let
A∗ ≡ At∗ , where t∗ is defined as in Proposition 1.

The area under the hazard curve can again be defined by integrating with respect
to A instead of t. We will let X denote cumulative risk given that the technology
path is A(·) and the policy path x is optimal given A(·):

X ≡
∫ ∞

0

δ̄Aα
t x

β
t dt =

∫ ∞

A0

δ̄ Aα xβ
A

(dA
dt

)−1

dA =

∫ ∞

A0

δ̄ Aα xβ
A Ȧ−1

A dA, (25)

where we will again abuse notation somewhat by letting xA and ȦA denote, respec-
tively, the optimal value of x (given technology path A(·)) and the value of Ȧ when
the technology level equals the subscripted A.

We will define vA and δA likewise. Note that δA ≡ δ̄Aαxβ
A, without dividing this

expression by ȦA. That is, δA is still a hazard rate: it denotes the probability of
catastrophe per unit time at technology level A, not the probability of catastrophe
per unit of technological development.

A technology path Ã(·) that is continuously differentiable almost everywhere and

whose right derivative ˙̃A(·) is defined and right-continuous everywhere is an accelera-

tion from A ∈ [A0,∞) to A ∈ (At,∞] if Ã0 = A0 and

˙̃AA = ȦA, A ̸∈ (A,A); ˙̃AA > ȦA, A ∈ (A,A).

The acceleration is permanent if A =∞ and temporary otherwise.
Let Ã(·) be an acceleration from A. Define ṽA such that at A < A, ṽA = vA,

and at A ≥ A, ṽA is the costate variable on survival at A given that the subsequent
technology path is Ã(·). Then x̃A is defined to equal (13) with A, ṽA in place of At, vt;

δ̃A ≡ δ(A, x̃A); and X̃ ≡
∫∞
A0

δ̃A
˙̃A−1
A dA.

Given a baseline technology level A and a technology growth rate ˙̃A > ȦA, denote

by Ã(·)[ϵ] the acceleration from A to A+ ϵ with

˙̃AA = ˙̃A, A ∈ (A,A+ ϵ).

Then the effect on cumulative risk, per unit of technological development, of instan-

taneously accelerating to ˙̃A at A is defined to be

∆
A, ˙̃A
≡ lim

ϵ→0

(
X̃[ϵ]−X

)
/ϵ,
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where X̃[ϵ] is cumulative risk X̃, as defined above, given acceleration Ã(·)[ϵ].
17

Instantaneous level effects — The effect per unit time of a positive shock to the tech-
nology level At, letting policy adjust instantaneously, depends on whether the shock
occurs before or after the regime-change time t∗. At t < t∗, temporarily multiplying
the technology level by m > 1 has no impact on the optimal choice of x.18 The hazard
rate thus rises. The future hazard rate is unaffected, so cumulative risk increases by

δt(m
α − 1) > 0

per unit of time that the technology level is raised.
At t ≥ t∗, temporarily multiplying the technology level by m > 1 multiplies the

policy variable by m−α+γ−1
β+γ−1 , by (13). In combination, the positive shock to tech-

nology and the negative impact on the policy variable multiply the hazard rate by

mα−β α+γ−1
β+γ−1 = m− (β−α)(γ−1)

β+γ−1 < 1. This resulting change in cumulative risk is

δt
(
m− (β−α)(γ−1)

β+γ−1 − 1
)
< 0

per unit of time that the technology level is raised.

Instantaneous accelerations — Multiplying the technology growth rate at t by m > 1
lowers cumulative risk (per unit of time that the shock lasts) regardless of t. It does
so only because the shock decreases the time spent at technology levels around At.
The shock has no impact on the policy associated with any technology level.

As in the tech-only model, therefore, the impact of this shock on cumulative risk
per unit of increase to the technology level during the acceleration is

δt((mȦt)
−1 − Ȧ−1

t ) < 0.

So the impact on cumulative risk per unit of time that the acceleration lasts is the
above multiplied by the new technology growth rate mȦt:

δt(1−m) < 0.

Accelerations — Consider a “sharp temporary acceleration”, in which technology
jumps at t from At to A > At and exponential technology growth is then main-
tained. Since in this model optimal policy is history-independent, this technology
shock amounts to a leap forward in time. The resulting change in cumulative risk is

−
∫ A

At

δAȦ
−1
A dA.

17The effect on an instantaneous acceleration on cumulative risk per unit time is ∆
A, ˙̃A

˙̃A, since

during the acceleration, ˙̃A units of technology are developed per unit time. This is of the same sign.
18Unless m is large enough to reverse inequality (12), a case we will ignore for simplicity.
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Such a jump is the limiting case of an acceleration from A to A, which can lower
the risk endured at the given range of technology levels for two reasons. First, as
in the tech-only model, increasing the technology growth rate at A always lowers
cumulative risk directly because the exponent on ȦA in integral (25) is negative:
˙̃A−1
A < Ȧ−1

A . Second, going beyond the tech-only model, given A ∈ [At, A), the value
of the future at A is higher given faster future technology growth: ṽA > vA. By (13),
this motivates weakly more stringent policy x̃A ≤ xA and thus a weakly lower hazard
rate δ̃A ≤ δA.

Via the first channel alone, the change in cumulative risk achieved by an accel-
eration is the integral, across technology levels, of the risk reductions achieved by
instantaneous accelerations at each technology level:∫ A

At

δA(
˙̃A−1
A − Ȧ−1

A )dA < 0.

Given a policy impact, the cumulative risk reduction achieved is greater.

To summarize:

Proposition 2. Acceleration and state risk

If γ > 1, so that X is finite, an instantaneous acceleration at A to ˙̃A > ȦA decreases
cumulative risk per unit of technological development during which it endures:

a) ∆
A, ˙̃A

= δA(
˙̃A−1 − Ȧ−1

A ) < 0

and an acceleration Ã(·) from A to A decreases cumulative risk by weakly more than
the corresponding integral of instantaneous accelerations:

b) X̃ ≤ X +
∫ A

A
∆

A, ˙̃AA
dA < X, with equality strict only if A ≤ A∗.

The results follow from the integral defining cumulative risk (25) and the definition of
instantaneous acceleration. The impacts of shocks to growth on survival are explored
in the generalized model of Appendix B.3, and the generalized results are given and
proved in detail there in Proposition 7.

Example — Given the parameter values used to illustrate the baseline path are the
same as those used to simulate Figure 3, consider a sharp temporary acceleration
“today”, at t = 75, that multiplies A by e0.2 ≈ 1.22, so that at g = 0.02, it amounts
to a 10-year leap forward.

Recall from the simulation of the previous section that the probability of survival
(from t = 75 onward) on the baseline path is approximately 65%. The proportional
increase in the probability of survival can then be found analytically. Cumulative risk
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X declines by precisely the area under the baseline hazard curve from t = 75 to 85;
and since δ75 = 0.1%, g = 0.02, and α = 1, this difference equals

∆X = −0.001
∫ 10

0

e0.02tdt = −0.05(e0.2 − 1).

S∞ = e−X is then multiplied by e−∆X ≈ 1.011. In absolute terms S∞ rises by
approximately 0.65 · 0.011 ≈ 0.7%.

3.5 Discussion

Slow growth makes catastrophe inevitable — As noted in Section 2.2, “deceleration”
can render survival impossible. For example, stagnation must do so.

Here, the technology conditions necessary for survival can be stated more precisely.
Suppose γ > 1 and consider a permanent deceleration after which technology grows
power-functionally, so that Ãt = tk for some k > 0. The exponential growth rate of
Ã, denoted g̃, is then time-varying, with g̃t = k/t. By (15) and since g̃v → 0, δt then

falls to 0 like t−
(α−β)(γ−1)

β+γ−1
k. Since cumulative risk is finite for δt ∝ t−κ iff κ > 1, the

probability of survival is positive iff

k >
β + γ − 1

(α− β)(γ − 1)
. (26)

Growth vs. patience —Faster growth increases the willingness to pay for safety. Those
concerned about the safety of the long-term future often pursue the same result via
ethical arguments for a low rate of time preference. Consider e.g. the Stern–Nordhaus
debate (and the long debate since) over the discount rate to use in climate policy, or
the arguments for concern for the future made by philosophers such as Parfit (1984),
Cowen and Parfit (1992), Ord (2020), and MacAskill (2022).

Mere level effects—permanent proportional increases to A—here impact policy
and survival probability similarly to proportional decreases to ρ. In brief, this is
because proportionally decreasing ρ raises v by a similar proportion (c.f. (17)), and
by (13), proportional increases to v and to A have similar effects on policy.

Acceleration can lower life expectancy — If γ < 1, so that civilization’s “life ex-
pectancy” is finite, accelerations can decrease it. To see this, recall that stagnation
at low A yields a permanent hazard rate of δ̄Aα. This may be arbitrarily low, so the
expected duration until catastrophe 1/(δ̄Aα) may be arbitrarily high. When γ < 1,
an acceleration can quickly yield a hazard rate that permanently approximates δ∗

(24). Civilizational life expectancy can thus fall to approximately 1/δ∗.
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4 Transition risk

4.1 Motivation

A hazard function of the form δ(At, xt) captures what we have called “state risk”: δ
depends on the level of technology. On this framing, it is perhaps unsurprising that
escaping risky states more quickly lowers cumulative risk.

But risk may instead be “transitional”: posed by technological development. This
is the intuition captured by Jones’s (2016) “Russian roulette” model of technological
development and (2024) model of AI risk, and by Bostrom’s (2019) analogy to drawing
potentially destructive balls from an urn. Perhaps stagnation at a given level of
technology is essentially safe, and risk is posed by discovering and deploying new
technologies with unknown consequences. If so, given a positive-growth baseline,
does accelerating technological development further increase cumulative risk?

4.2 A transition-risk-based hazard function

To explore this possibility, suppose δ increases in Ȧt instead of, or as well as, in At.
We will again restrict our consideration to a constant elasticity hazard function:

δt = δ̄Aα
t Ȧ

ζ
tx

β
t , δ̄ > 0, ζ ≥ 0, β > 1. (27)

Hazard function (5) is the special case of (27) with ζ = 0 (and β > α > 0). If
ζ > 0, however, the model is most naturally interpreted as one in which risk is posed
by the introduction of new technologies—“draws from Bostrom’s urn”—which each
increase A by one unit. Fixing policy, introducing multiple technologies can pose
more, less, or equal risk if done concurrently than if done in sequence, depending on
the sign of ζ − 1. Introducing more advanced technologies can pose more, less, or
equal risk than introducing less advanced technologies, depending on the sign of α.

Alternatively, to interpret one “new technology” as a proportional increase to A,
simply rewrite the hazard function as

δt = δ̄Aα+ζ
t

(Ȧt

At

)ζ
xβ
t .

Here α + ζ > 0 is the condition under which developing more advanced technologies
poses more risk than developing less advanced technologies. If Ȧ/A has long been
roughly constant, the view that the hazard rate has risen must be attributed to the
increasing danger of each “technological development” in this sense.

Finally, consider the case of α = −1, ζ = 1, so that

δt = δ̄
Ȧt

At

xβ
t .
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Here, fixing x, each proportional increase toA induces the same hazard, independently
of how quickly the increase occurs. In the absence of policy—with x = 1 (or any other
constant) permanently—this model is essentially equivalent to the “Russian roulette”
model of Jones (2016)19 and the AI risk model of Jones (2024).

4.3 Acceleration and transition risk

Without policy — Suppose that the baseline technology path A(·) is continuously

differentiable, with a positive derivative. Let Â ≡ limt→∞At be finite or infinite.
As implied above, fixing policy, whether acceleration increases or decreases cumu-

lative risk depends on whether ζ is greater or less than 1. This can, again, be seen
by integrating the hazard curve with respect to A:

X =

∫ ∞

0

δ̄Aα
t Ȧ

ζ
tdt =

∫ Â

A0

δ̄AαȦζ−1
A dA.

Given acceleration Ã(·) from A ∈ [A0, Â) to A ∈ (A, Â], cumulative risk equals

X̃ = X +

∫ A

A

δ̄Aα
( ˙̃Aζ−1 − Ȧζ−1

A

)
dA.

The integral is negative if ζ < 1, zero if ζ = 1, and positive if ζ > 1.
Because the Jones models implicitly adopt ζ = 1, though there is a technology

level Â <∞ at which it is optimal to halt technological development (Appendix B.5),
the speed of technological development before Â does not affect cumulative risk.

With policy — We have seen that the impact of acceleration on cumulative transition
risk is ambiguous absent policy. Under optimal policy it remains ambiguous, but a
tendency for acceleration to lower cumulative risk may be reintroduced.

For simplicity and focus, we will assume that A grows at a constant rate g and
that γ > 1. Also, since given exponential growth gȦ = g, we will impose

β > α + ζ, (28)

which, rather than β > α, is now the condition necessary for survival without Ct =
Atxt → 0. Under these conditions, since Ȧ is proportional to A, the planner’s problem
is precisely as described in Section 3.3, with α + ζ taking the place of α (up to a
coefficient gζ that can be incorporated into δ̄). Baseline x and δ paths, and S∞, are
unchanged. The existential risk Kuznets curve remains.

Let A∗ denote the uppermost technology level at which it is optimal to set x = 1
on the baseline technology path. Since the first-order condition

∂u

∂xt

(At, xt) ≥
∂δ

∂xt

(At, xt)vt =⇒ A1−γ
t x−γ

t ≥ δ̄Aα
t βx

β−1
t vt

19Our δ̄ is the variable there denoted π.
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must be satisfied everywhere and hold with equality for x < 1, we have

xA =

1 A ≤ A∗,(
δ̄βAα+γ−1Ȧζ

AvA

)− 1
β+γ−1

A > A∗.
(29)

Substituting (29) into the expression for cumulative risk

X =

∫ ∞

A0

δ̄ AαȦζ−1
A xβ

A dA, (30)

we have

X =

∫ A∗

A0

δ̄AαȦζ−1
A dA+

∫ ∞

A∗

(
δ̄1−γββA(β−α)(γ−1)vβA

)− 1
β+γ−1 Ȧ

ζ γ−1
β+γ−1

−1

A dA. (31)

Recall that a technology path Ã(·) is an acceleration if ˙̃AA > Ȧ for technology levels
A ∈ [A0,∞) to A ∈ (A,∞]. With or without policy, an acceleration affects cumulative
risk directly, by changing the technology growth rate from A to A. With policy, an
acceleration also affects cumulative risk indirectly by affecting vA for A ∈ [A,A),
which affects policy at this range of technology levels.

Under hazard function (5), faster technology growth is always preferred, as ex-
plained following (12). A future with faster growth is more valuable, so an acceleration
from A to A raises vA for A ∈ [A,A). Under hazard function (27), this no longer
holds. Unlike an increase to At, an increase to Ȧt brings no contemporaneous benefit,
but it now imposes risks that can still be mitigated only with less contemporaneous
consumption. We can see that growth is sometimes undesirable most plainly when
α = −1, ζ = 1: again, this is the Russian roulette model, and as Jones finds, with
γ > 1, the planner grows technology only to a finite level.20

These complexities are avoided when we focus on instantaneous accelerations. The
impact of an acceleration from A to A on vA, for A ∈ [A,A), falls to zero as A−A→ 0.
The impact of a brief acceleration on cumulative risk is therefore approximately the
impact found when we ignore impacts on vA.

Proposition 3. Instantaneous acceleration and transition risk
Given hazard function (27) and technology path (4), choose a technology level A > 1

and growth rate ˙̃A > ȦA. If

a. A ≥ A∗ and ζ < (=, >) 1 + β
γ−1

, or

b. A < A∗, ζ < (=, >) 1, and ˙̃A maintains (29) = 1 at A = A,

20In this more general model, the optimality of stagnation is knife-edge (Appendix B.5), but the
result that accelerating from A to A does not necessarily raise vA for A ∈ [A,A) is not.
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then ∆
A, ˙̃A

< (=, >) 0.

The result follows essentially immediately from the exponent on ȦA in (30).21 In
particular, instantaneous acceleration after A∗ lowers cumulative risk as long as

ζ
γ − 1

β + γ − 1
− 1 < 0 =⇒ ζ < 1 +

β

γ − 1
. (32)

It is sufficient, though not necessary, for (32) that

ζ ≤ 1 or α ≥ −1, γ ≤ 2.

The ζ ≤ 1 case follows from the fact that γ−1
β+γ−1

< 1. The α ≥ −1, γ ≤ 2 case

follows from the fact that if α ≥ −1, then, by (28), ζ < β + 1, so ζ
β+1

< 1. Since
macroeconomic estimates of γ ≤ 2 are standard, this result suggests that accelerations
lower cumulative risk on the optimal path in the context of transition risk, at least if
they occur late enough in time that mitigation is already underway.

Again, this is without considering the fact that an increase to future growth can
change the value of the future. Though the direction of this change is ambiguous,
it is often taken for granted that, on a conventional discount rate, faster technology
growth would currently be a benefit. If so, this is another channel through which a
(positive-duration) acceleration increases concern for safety.

It may be counterintuitive that instantaneous acceleration reduces risk only when
γ lies below a bound. The result is due to the fact that, when γ is high, the marginal
utility of consumption rises rapidly as x is cut, so following an acceleration, a small
cut to x suffices to equalize the marginal utility of consumption with that of safety
spending. The higher γ is, the more quickly x falls as A rises, but the less sensitive
x is to a change in ∂δ/∂x—e.g. an increase due to higher Ȧ—at a given value of A.

4.4 Discussion

Nonrivalry in safety effort —Hazard function (27) is explored here mainly for its sim-
plicity and similarity to (5). This functional form overemphasizes a channel through
which the risks posed by a series of technological developments can be cheaper to
mitigate if they occur at once than if they occur in sequence. Suppose that β ≈ 1,
that ζ = 1, and that two small A-increases—“experiments”—can occur in sequence
or simultaneously. If they occur in sequence, halving the risk posed by each requires
halving x and thus consumption for two periods in a row. If they occur simultane-
ously, the same risk-reduction only requires halving consumption for one period.

For some kinds of experiments and safety efforts, this “nonrivalry” assumption is
reasonable. Monitoring wastewater to detect pandemics early reduces the risk posed
by the relevant biological experiments by a proportion independent of how many are

21A rigorous proof may be found in Appendix C.1.
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underway. For other kinds, the assumption is not reasonable: e.g. it does not apply
to the safety equipment that must be used at each lab (c.f. Appendix B.4.2).

This model is thus in no sense a thorough study of the relationship between
growth and transition risk. It is intended only to offer two limited lessons. First,
under optimal policy, the effect of acceleration on transition risk remains ambiguous.
Second, the presence of an optimal policy response can change the conditions under
which acceleration lowers risk, and can relax them to the extent that safety efforts
are nonrival across contemporaneous risks.

Stagnation vs. deceleration — When ζ > 0, complete stagnation (Ȧ = 0) is always
the safest path of all. Nevertheless, we have seen with and without policy that given
a positive growth rate, faster growth can decrease risk.

This is because, given stagnation at Â, levels A > Â are never attained. Cumula-
tive risk is thus not (30) but (30) with the ∞ replaced by Â. Absent stagnation, all
levels of A are attained; the growth rate only determines the risk endured at each.
The direct cost of faster progress during a given A-range (higher risk per unit time)
is partially, and may be more than fully, outweighed by the fact that faster progress
motivates more mitigation at each point in time, in combination with the familiar
fact that when progress is faster we do not linger in a given A-range as long.

5 Conclusion

Human activity can create or mitigate existential risks. The framework presented
here illustrates that, under various conditions, existential risk should be expected to
exhibit a Kuznets curve. This observation offers a potential economic explanation for
the claim that we are in a “time of perils”. We may be advanced enough to be able to
destroy ourselves, but not yet rich enough that we are willing to make large sacrifices
for the sake of safety. If we are indeed living through the time of perils, reductions
to existential risk today have massive long-term consequences.

This framework also highlights a channel through which some efforts intended to
reduce existential risk may backfire. In the absence of policy, when risk is posed
by the existence of advanced technologies, broad-based decelerations to technological
development typically worsen or do not affect the odds of long-term survival. Given an
optimal policy response, even by a policymaker with little concern for the long-term
future, this impact is magnified. The impact can be significant, with proportional
consumption decreases having comparable impacts to proportional increases in the
planner’s rate of time preference. In the extreme, permanent stagnation can make a
catastrophe inevitable that might otherwise have been avoided.

This lesson comes with three caveats. First, it is not an argument against regu-
lating the use of risky technologies. Indeed, a primary channel explored here through
which technological development lowers risk is that it hastens the day when regula-
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tion is severe. Some recent reactions to calls for heavy AI regulation, e.g. that of
Andreessen (2023), might be read as expressing the view that our “x” should never
be set far below one. If that is so, it is not for reasons presented in this paper.

Second, when risk is posed by the development of advanced technologies, the
effect of acceleration on risk is ambiguous. In the “transition risk” models of Jones
(2016, 2024), acceleration does not affect cumulative risk. Under slight modifications
to these models, the impact may be positive or negative. Policy may facilitate a
tendency for acceleration to weakly decrease cumulative risk, as illustrated in Section
4; but it seems likely that in other plausible models it would not.

Third, where we have found that policy magnifies a negative link between acceler-
ation and cumulative risk, we have assumed that policy is optimal. If it is not, then
the impact of acceleration on cumulative risk may be reduced or even overturned, as
illustrated in Section 3.1.22 The appropriate lesson about the impact of policy on the
relationship between acceleration and risk is only that, to the extent that the policy
regime equates or will eventually equate the marginal utility of consumption to the
marginal expected discounted utility of safety expenditure, consumption-increasing
technological development has the unseen benefit of speeding future safety efforts. For
slowing technological development to lower cumulative risk, there must be a policy
failure severe and lasting enough to outweigh this potentially large benefit.

In this light, further research on the nature of policy distortions around the regula-
tion of risky technologies would be valuable. Exploring the long-term implications of
other models of anthropogenic existential risk, and of optimal policy in the face of it,
could be valuable as well, to better characterize the scope of the result that optimally
regulated acceleration weakly lowers cumulative risk. If plausible models are found
under which the result is overturned, this will naturally pose important questions
which can only be answered empirically. For now, however, the results presented here
suggest that even those exclusively concerned with reducing cumulative existential
risk should often cheer technological advances despite their short-term hazards, and
advocate risk-reduction measures today only when they are sufficiently targeted and
the costs to broad-based technological progress are sufficiently small.

22Shulman and Thornley (2024) argue that the policy response to existential risk is in fact far
from optimal, even under a conventional discount rate.
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A Appendix

A.1 Existence and uniqueness of optimal policy path

Necessary and sufficient conditions — The optimization problems analyzed in Sec-
tions 3–4, and the supplemental appendices, feature one choice variable x and one
state S. Expected flow utility at t is Stu(At, xt) for a C2 function u(·), strictly concave
in x, with a lower Inada condition on x. The law of motion for S is −Stδ(At, Ȧt, xt)
for a C2 function δ(·). A, Ȧ are independent of x, so operate as functions of t.

Letting v denote the costate variable on S, the current value Lagrangian corre-
sponding to the problem is

L(St, xt, vt, µt, t) = Stu(xt, t)− vtStδ(xt, t) + µt(1− xt) (33)

(abusing notation by reusing u(·) and δ(·) as functions of time), where µt is the the
Lagrange multiplier on xt. We impose the xt ≤ 1 constraint but not the xt ≥ 0
because the latter can never bind, by the lower Inada condition on u(·).

(33) satisfies the Mangasarian concavity condition that L(·) is weakly concave
in S and x. So applying Caputo (2005), Theorems 14.3-4 and Lemma 14.1,23 given
continuous paths of x ∈ [0, 1] and S ∈ [0, 1] with S0 = 1 and Ṡt = −Stδ(xt, t), we
have that the x, S path is optimal if—and, given semi-continuity of x and S, only
if—for some semi-differentiable path of v and some semi-continuous path of µ ≥ 0,
at all t the following first-order conditions are satisfied

∂L
∂xt

(St, xt, vt, µt, t) = µt
∂L
∂µt

(St, xt, vt, µt, t) = 0,
∂L
∂µt

(St, xt, vt, µt, t) ≥ 0, (34)

as well as the transversality condition that

lim
t→∞

e−ρtvt = lim
t→∞

e−ρtvtSt = 0. (35)

Given optimal paths of x and S and corresponding paths of v and µ, v is continuous
and satisfies

v̇t = ρvt −
∂L
∂St

= ρvt − u(xt, t)− vtṠt = (ρ+ δ(xt, t))vt − u(xt, t) (36)

except at discontinuity points of x, where v’s right and left derivatives may differ.

The transversality condition — Given a continuous v path, only

xt =

{
1, ∂u

∂x
(1, t)− ∂δ

∂x
(1, t)vt ≥ 0;

xt : ∂u
∂x
(xt, t)− ∂δ

∂x
(xt, t)vt = 0, otherwise

(37)

23Caputo (2005) uses the more general present value notation. Because the control problem at
hand is exponentially discounted, we here use the simpler current value notation.
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µt =
∂u

∂xt

(xt, t)−
∂δ

∂xt

(xt, t)vt (38)

satisfy (34) for all t. Any such x path is well-defined, by the continuous differentia-
bility of u(·) and δ(·) in x and the fact that u(·) and δ(·) strictly increase in x. Any
such x path is also right-continuous in time, by

• the twice continuous differentiability of u(·) and δ(·) (expressed as functions of
x, A, and for δ(·) in Section 4, Ȧ);

• the right-continuity of the right derivative of A(·) in time;
• (for Section 4, given exponential growth or instantaneous acceleration) the right-
continuity of the right derivative of Ȧ(·);

and the implicit function theorem. Any such µ path is then also right-continuous in
time by the composition of continuous functions. To show there exists an optimal
path, and that only one such path is semi-continuous, it will now suffice to show that
there is a unique v path for which (35)–(36) are satisfied given the corresponding x
path (37) and its implied S path, and that the corresponding x path is semi-continuous
(in fact it is right-continuous).

The solution to differential equation (36) is

vt = e
∫ t
0 (ρ+δs)ds

(
v0 −

∫ t

0

e−
∫ s
0 (ρ+δq)dqu(xs, s)ds

)
(39)

=⇒ v0 =

∫ t

0

e−ρsSsu(xs, s)ds+ e−ρtStvt. (40)

Since (40) is continuous in t (by the boundedness of u(·) and the continuous evolution
of S) and holds for all t, v satisfies (35)–(36) iff

v0 =

∫ ∞

0

e−ρtStu(xt, t)dt. (41)

Given (37), vt determines xt for all t. Given (36), vt and xt determine the right
derivative of v for all t. Given v0, therefore, there is a unique path of v—and thus of
x, and thus of S—compatible with (36)–(37). We will now show that there is at least
one value of v0 for which (41) is satisfied, given the corresponding x and S paths. For
such a v0, the corresponding variable paths by construction satisfy (34)–(35).

Existence — Let v(v0) and x(v0) denote the unique paths of v and x compatible with
(36)–(37) for which v0(v0) = v0. By (39), limv0→−∞ vt(v0) = −∞ for all t ≥ 0. By
(37), therefore, for every t ≥ 0, there is a ṽ0 such that xt(v0) = 1 for all v0 < ṽ0. Let
s ≥ 0 denote a time at which As ≥ 1, and choose ṽ0 low enough that ṽs < 0 and
thus xs(ṽ0) = 1. By (36), because u(1, s) ≥ 0, ˙̃vt < 0. We thus have ṽt < 0, and thus
xt = 1, for all t ≥ s.

Now observe that if v0 < ṽ0, vt(v0) < vt(ṽ0) for all t. Otherwise, by the continuity
of v with respect to time, there would be a t with vt(v0) = vt(ṽ0), and integrating
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(36), with (37) substituted for xt, would allow us to identify v0 = ṽ0. Thus, if v0 < ṽ0,
xt(v0) ≥ xt(ṽ0) for all t ≥ 0. It follows that, for some sufficiently low v0, the right-
hand side of (41) exceeds the left-hand side.

For every optimization problem under consideration, there is some U by which
feasible values of the right-hand side of (41) are upper-bounded. So, for v0 > U , the
left-hand side of (41) exceeds the right-hand side.

By (37) and the implicit function theorem, xt is continuous in vt for all t. (36)
then implies that v̇t is defined and continuous in vt for all t, and thus that vt(v0), then
xt(v0), and then the right-hand side of (41) are continuous in v0 for all t. It follows
from the intermediate value theorem that there exists a v0 ∈ (v0, v0) for which (41)
holds.
Uniqueness — The uniqueness condition of Caputo (2005), Thm. 14.4 does not di-
rectly apply because the Lagrangian is linear, not strictly concave, in S. This can be
remedied by defining the state variable as e.g. S2 without affecting any other results.

Uniqueness (among semi-continuous x paths) also follows from the facts that a
path is optimal iff v0 attains its maximum feasible value and that, given (34)–(35),
v0 determines a unique path for every variable.

A.2 Proof of Proposition 1

Asymptotic constancy of gv — From (36), because v is the costate on S, it obeys

v̇t = (ρ+ δt)vt − u(Ct) =⇒ gvt = ρ+ δ(At, xt)−
u(Atxt)

vt
. (42)

Let β̃ ≡ β + γ − 1. From (13), once xt is interior we have

xt = A
−α+γ−1

β̃

t

(
δ̄βvt

)− 1
β̃ . (43)

Substituting (43) into (42) yields

gvt = gv(vt, t) ≡

ρ+KA
(β−α)(1−γ)

β̃

t v
−β

β̃

t + 1
1−γ

v−1
t , γ ̸= 1;

ρ+ log
(
A

−β−α
β

t

(
δ̄βvt

)− 1
β
)
v−1
t , γ = 1,

(44)

where K ≡ δ̄
− 1−γ

β̃
(
β
−β

β̃ − 1
1−γ

β
− 1−γ

β̃
)
.

If γ > 1, recalling that vt monotonically increases and that At → ∞, the central
term of (44) vanishes. Also, in this case, v is upper-bounded, so it approaches an
upper bound v∗ by the monotone convergence theorem. So limt→∞ gvt is defined, with

lim
t→∞

gvt = ρ+
1

v∗(1− γ)
. (45)
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This limit cannot be positive, because v is upper-bounded, and it cannot be negative,
because v increases with time. So limt→∞ gvt = 0, and v∗ = 1

ρ(γ−1)
.

If γ < 1, then K < 0, and the central term of (44) grows in magnitude without
bound, fixing v. v must therefore also grow without bound, or else gvt is eventually
negative. Now observe that

˙gvt = KA
(β−α)(1−γ)

β̃

t v
−β

β̃

t

((β − α)(1− γ)

β̃
g − β

β̃
gvt

)
− 1/vt

1− γ
gvt

=
(
gvt − ρ− 1/vt

1− γ

)((β − α)(1− γ)

β̃
g − β

β̃
gvt

)
− 1/vt

1− γ
gvt

= −β

β̃
g2vt +

((β − α)(1− γ)

β̃
g +

β

β̃
ρ+

1

β̃vt

)
gvt −

(
ρ+

1/vt
1− γ

)(β − α)(1− γ)

β̃
g.

This differential equation has two steady states, both positive. Since 1/vt → 0, the
quadratic formula tells us that these steady states approach ρ and g(β−α)(1−γ)/β,
with the former attractive and the latter repulsive. By (7), ρ is higher, and is ruled
out as a steady state by the transversality condition (35). Then because the limit

lim
t→∞

ġv(gv, t) > 0 ∀gv ∈
((β − α)(1− γ)

β
g, ρ
)
; < 0 ∀gv <

(β − α)(1− γ)

β
g

is defined and continuous in gv, we must have

lim
t→∞

gvt =
(β − α)(1− γ)

β
g. (46)

Otherwise gv → −∞, ruled out by the monotonicity of v, or gv → ρ, ruled out above.
The γ = 1 case is analogous to the γ > 1 case. Differentiating (44) with respect

to time yields ˙gvt strictly, continuously increasing in gvt from −∞ at vt = 0 to ρ
at vt = ∞. There is thus a unique, positive, and repulsive “time-dependent steady
state” value of gv (i.e. gv for which ġv(gv, t) = 0) which declines to zero as t→∞. So

lim
t→∞

ġv(gv, t) > 0 ∀gv > 0, lim
t→∞

ġv(gv, t) < 0 ∀gv < 0

are defined and continuous in gv, and gv ̸→ ∞,−∞ imply limt→∞ gvt = 0.

Asymptotic behavior of other variables — With the asymptotic behavior of gv pinned
down, that of x and C follows immediately, as does that of δ if γ > 1.

To find the asymptotic behavior of δ given γ ≤ 1, rearrange (44) to get

vt =
u(Ct)

ρ+ δt − gvt
, (47)
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and substitute (47) into C1−γ
t = δtβvt ((11) rearranged) to get

δt =

{
ρ+δt−gvt

β
1−γ

1−Cγ−1
t

, γ < 1;
ρ+δt−gvt
β log(Ct)

, γ = 1
=⇒ δt =


(ρ−gvt)(1−γ)

β
(
1−Cγ−1

t

)
−1+γ

, γ < 1;

ρ−gvt
β log(Ct)−1

, γ = 1.

If γ < 1, the limit of gv (46) and C →∞ from (22) imply

lim
t→∞

δt =
(ρ− (β − α)(1− γ)g/β)(1− γ)

β + γ − 1
.

If γ = 1, substitute 0 for gvt. By (22), ∃C > 0 : limt→∞
Ct

e
β−α
β

gt
= C, so

lim
t→∞

δtt = lim
t→∞

ρ− gvt

β
(
log(Ct/e

β−α
β

gt) + log(e
β−α
β

gt)
)
/t− 1/t

=
ρ

(β − α)g
.
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Online appendix

B Supplemental materials

B.1 Calibrating the elasticity of the hazard rate to safety
expenditures

Shulman and Thornley (2024) estimate that well-targeted expenditures of $400B over
the next decade would reduce the probability of existential catastrophe over the next
decade by at least 0.1% in absolute terms, from a baseline of 1.85%.

The scale of the magnitude of the risk is taken from Ord’s (2020, p. 167) educated
guesses and may be disputed. However, an estimate of β depends only on the propor-
tion by which a given consumption sacrifice will reduce the hazard rate. We will rely
on Shulman and Thornley’s assessment that expenditures of $400B would multiply
the probability of existential catastrophe over the next decade by at most

1− 0.1%

1.85%
≈ 0.946, (48)

while remaining agnostic about the the magnitude of the probability. For instance, we
are trusting their assessments of the extent to which disease monitoring expenditures
would be able to prevent existentially hazardous anthropogenic pandemics by helping
authorities to contain them early, while remaining agnostic about the probability per
year that such a pandemic will arise.

Global consumption per year is currently approximately $72.5T.24 If real con-
sumption grows at 2% per year and the relevant interest rate is 5% per year,
the present value of global consumption over the next ten years is approximately
$72.5T × (1 − e−10(0.05−0.02))/(0.05 − 0.02) ≈ $626.4T. A sacrifice of $400B = $0.4T
in today’s dollars over the next decade is thus a sacrifice that multiplies consumption
by a fraction of

1− 0.4

626.4
≈ 0.99936. (49)

Given xβ < 0.946 at x ≈ 0.99936, it follows that

β >
log(0.946)

log(0.99936)
≈ 86.7.

This exercise of course tells us nothing about whether it is reasonable to assume a
constant-elasticity hazard function in general. If the Shulman and Thornley estimate

24World Bank national accounts data and OECD National Accounts data files: Final consumption
expenditure (current US$). Retrieved from https://data.worldbank.org/indicator/NE.CON.

TOTL.CD?end=2022&start=2022, May 20, 2024.

https://data.worldbank.org/indicator/NE.CON.TOTL.CD?end=2022&start=2022
https://data.worldbank.org/indicator/NE.CON.TOTL.CD?end=2022&start=2022
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is correct within three orders of magnitude, however, it does prove that the hazard
function is currently convex over at least some range of feasible consumption levels.
This follows immediately from the facts that (49) > (48) and that the hazard rate
cannot be cut by a proportion greater than one.

B.2 State risk with policy: growth vs. patience

In the context of the model of Section 3, we will compare the effects on cumulative
risk of a sharp and permanent level effect at t, in which A is multiplied by m slightly
greater than 1, with the effects of permanently dividing ρ by m. If γ ≤ 1, the
similarity of the two interventions is trivial: cumulative risk is infinite both before
and after each intervention. We will thus assume γ > 1.

A sharp and permanent level effect at t, whereby A is multiplied by m slightly
greater than 1, amounts to a leap forward of approximatelym/g years. This decreases
cumulative risk by approximately δtm/g.

Before t∗, therefore, the impact of a level effect on cumulative risk rises exponen-
tially with δt. Early in time δt may be arbitrarily low, so the impact of the level effect
on cumulative risk may as well. The impact of a decrease to ρ on cumulative risk,
on the other hand, does not change over time before t∗. A decrease to ρ does not
affect the hazard rate immediately, but decreases it in the future by pulling forward
the regime-change time and changing the path of the hazard rate afterward. These
impacts do not depend on when (before t∗) ρ is lowered.

By contrast, consider what happens as vt → v̄. By (13), in the limit,

xt ≈
(
δ̄βv̄

)− 1
β+γ−1A

−α+γ−1
β+γ−1

t . (50)

At large t, permanently multiplying A by m > 1 multiplies xs, at each s ≥ t, by

approximately m−α+γ−1
β+γ−1 . In conjunction, the increase to As and the proportional

decrease to xs multiply δs by m− (β−α)(γ−1)
β+γ−1 for s ≥ t. Similarly, permanently dividing ρ

by m > 1 multiplies xs (s ≥ t) by approximately m− 1
β+γ−1 , which multiplies δs (s ≥ t)

by approximately m− β
β+γ−1 . The impacts are equal iff

(β − α)(γ − 1) = β

⇐⇒ γ = 2 +
α

β − α
, (51)

with the level effect more impactful if the left-hand side is greater and the decrease to
ρ more impactful if the right-hand side is greater. The growth-based intervention is
more impactful when γ is higher, because higher values of γ motivate faster transitions
from consumption to risk-reduction.

Since β > α > 0, expression (51) reveals that the level effect can only be more
impactful in this model if γ > 2. Still, it is notable that mere level effects to growth
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can ultimately affect the probability of survival at a comparable scale to permanent,
equally-proportioned decreases to the social rate of pure time preference (holding
technology growth fixed). Put another way, even temporary stagnation can carry
long-term costs similar to those of permanently moving ethical attitudes away from
concern for the future.

B.3 State risk with policy: generalized results

Sections 3.3–3.4 are set in the environment of Section 3.2. The three components of
this environment are the technology path, the function from technology and policy
to the hazard rate, and the utility function. A functional form is assumed for each.

Here we will maintain CRRA utility with γ > 1. We will however greatly relax our
assumptions on the technology path and the hazard rate, to identify the conditions
under which the lessons of Sections 3.3–3.4 are maintained.

In Sections B.3.2–B.3.3, generalizing Proposition 1 from Section 3.3, we find that
growth motivates increasing concern for safety: it is often optimal to set x = 1 early
in time and x → 0 late in time. A central result is that, unless lowering risk is so
difficult that it is not achieved even with stagnation in consumption, the hazard rate
is also driven to 0.

In Section B.3.4, generalizing Section 3.4, we likewise find that when a hazard
function is compatible with survival, faster technology growth generally increases
the probability of survival. The results support the robustness of the lessons drawn
from hazard function (5): that survival is likely possible on the optimal path, and that
faster consumption technology growth, if optimally regulated, will raise its probability.

B.3.1 Assumptions

Assumptions on technology growth — We will assume throughout only that the tech-
nology path A(·) satisfies some or all of the following conditions:
A1. continuous differentiability almost everywhere and right-continuity of the right

derivative Ȧ everywhere, with Ȧt > 0 for all t;
A2. A0 > 1;
A3. limt→−∞ At = 0; and
A4. limt→∞ At =∞.
We will call a technology path A(·) admissible if it satisfies A1–A4.

Assumptions on the hazard rate — We will also consider a wider class of hazard
functions. Among these, we will find relatively simple conditions under which a given
hazard function and a given technology growth path are compatible with survival on
the planner’s policy.

Return to the three desiderata preceding the introduction of hazard function (5).
We will assume weakenings of two of these desiderata directly, and certain results will
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require a weakening of the third. In particular, we will assume that the hazard rate
increases in x no less quickly than in A and is weakly convex in x. For certain results
we will assume that the hazard rate does not decrease too quickly in A.

We will add to these the preliminary conditions that δ(·) is continuously differen-
tiable; that, when consumption equals zero, so that the entire productive capacity of
society is dedicated to existential risk reduction, δ = 0; and that otherwise δ > 0.25

Formally, we will assume at most that the hazard rate is a function of A > 0 and
x ∈ (0, 1] satisfying the following conditions:
D1. δ(A, x) > 0,
D2. limx→0 δ(A, x) = limA→0 δ(A, x) = 0,
D3. twice continuous differentiability,26

D4. ηx(A, x) ≥ ηA(A, x), and
D5. weak concavity in x,
where ηy denotes the elasticity of δ with respect to y ∈ {A, x}. We will call a hazard
function admissible if it satisfies D1–D5.

Note that the constant elasticity hazard function of Sections 3.2–3.4 is admissible,
with ηA = α and ηx = β independent of A and x. Note also that we do not require
ηA(A, x) always to be positive: we allow new technologies to lower the hazard rate at
a given degree of foregone consumption.

B.3.2 The end of consumption growth

Let C∗ ≡ limt→∞Atxt, when this limit is defined.
Given hazard function (5), C∗ = ∞, by (19) from Proposition 1. However, some

admissible hazard functions motivate decreases to x fast enough that we do not have
C∗ =∞. C∗ may be finite, or Ct may oscillate indefinitely.

Proposition 4. The end of consumption growth
Given an admissible hazard function δ(·), define

R(C) ≡ lim
A→∞

∂δ

∂x

(
A,

C

A

) Cγ

A
v̄, (52)

R∗ ≡ lim
C→∞

R(C).

Given an admissible technology path and hazard function,
a) If R∗ ≤ 1, then C∗ =∞.
b) If R∗ > 1, then C∗ ̸=∞.

Proof. See Appendix C.2.

25Recall that the hazard rate denotes the flow probability of anthropogenic existential catastrophe.
26We will define ∂δ

∂y (A, 1) ≡ limx→1
∂δ
∂y (A, x) for y ∈ {A, x}, and allow these derivatives to be

infinite.
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To interpret the result, recall that x = C/A. (52) characterizes, if C is fixed even as
A grows, what happens to the ratio of the marginal value of lowering x via increased
safety ( ∂δ

∂x
·v) to the marginal utility of raising x via increased consumption (AC−γ). If

the ratio approaches 1, then it is optimal for consumption to stagnate in the long run
at C. If the ratio is greater than 1 for sufficiently large C, therefore, then stagnation
at some finite C is optimal.

Recall from (17) that v̄ ≡ 1
ρ(γ−1)

. When R(C) > 0, therefore, R(C) decreases in ρ.
A lower discount rate can thus shift R∗ from below to above 1, resulting in stagnation
when there would otherwise have been long-run consumption growth, but never the
reverse. Consumption stagnation is not in general desirable when ρ is sufficiently
low, or undesirable when ρ is sufficiently large: for many hazard functions, as shown
at the end of the next subsection, R∗ is above 1 (even infinite) or below 1 (even
0) for any ρ > 0. Still, Proposition 4 illustrates how calls for an “end to growth”
may be compatible with this model. Concern for the future can motivate controls on
technological deployment strict enough to halt growth in consumption, despite the
tendency for accelerating technological development to lower cumulative risk.

B.3.3 The Kuznets curve generalized

Proposition 5. The Kuznets curve generalized
Given an admissible technology path and hazard function,

a) limt→−∞ xt = 1.
If ηA is bounded above 1− γ, then limt→∞ xt = 0.

b) limt→−∞ δt = 0.
If C∗ =∞, then limt→∞ δt = 0.
If C∗ ̸=∞, ηA is bounded above 1− γ, and ηx is upper-bounded, then
limt→∞ δt ̸= 0.

Proof. The proof of (a) is given in Appendix C.3. The proof of (b) is as follows.
By D1, D2, and D5, δ(A, x) is non-decreasing in x. So for all t, δt ≤ δ(At, 1). By

D2, limA→0 δ(A, 1) = 0. So by A3, limt→−∞ δt = 0.
For the positive limit, begin with the weak first-order condition that the marginal

flow utility of increasing x must weakly exceed the marginal cost via an increased
hazard rate. Then multiply both sides by xt:

A1−γ
t x−γ

t ≥
∂δ

∂x
(At, xt) vt

=⇒ (Atxt)
1−γ ≥ ∂δ

∂x
(At, xt)xt vt. (53)

If C∗ =∞, the left-hand side of (53) tends to 0. Since v is (eventually) positive and
does not fall by D4, ∂δ

∂x
x→ 0. Since ∂δ

∂x
x ≥ δ by D1 and D5, δ → 0.

If ηA is bounded above 1 − γ, limt→∞ xt = 0 by (a). Since eventually xt < 1,
eventually (53) holds with equality. If C∗ ̸= ∞, the left-hand side does not tend to
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0 in the limit. Because vt is upper-bounded,
∂δ
∂x
x does not tend to zero either. So if

ηx ≡ ∂δ
∂x

x
δ
is upper-bounded, δ ̸→ 0.

Part (b) of the proposition stems from the fact that, as long as consumption rises
without bound, its marginal utility falls to zero. If the hazard rate does not also
fall to zero, the marginal value of sacrificing consumption to lower it further stays
positive. The hazard rate must therefore fall to zero.

Even so, unbounded consumption growth does not necessarily coincide with a
positive probability of survival. To achieve S∞ > 0, δt must not only fall to 0
but fall sufficiently quickly. This in turn is guaranteed whenever consumption rises
sufficiently quickly, which holds under a strengthening of the condition for unbounded
consumption growth from Proposition 4.

Proposition 6. Survival generalized
Given an admissible hazard function δ(·) and an admissible technology path A(·) such
that, for some k > 1 and some t we have

At ≥ t
k

γ−1 ∀t > t, (54)

define

R̃(k) ≡ lim
t→∞

∂δ

∂x

(
At,

t
k

γ−1

At

)t kγ
γ−1

At

v̄.

a) If limk↓1 R̃(k) < 1, then ∃t : Ct > t
1

γ−1 ∀t > t and S∞ > 0.

b) If limk↑1 R̃(k) > 1, then ∃t : Ct < t
1

γ−1 ∀t > t.
If in addition ηx is upper-bounded, then S∞ = 0.

Proof. See Appendix C.4.

Observe that, similar to R(·), R̃(k) is the long-run ratio of the marginal value of
lowering risk to the marginal value of increasing consumption when

Ct ∝ t
k

γ−1 . (55)

If R̃(k) < 1 on this consumption path, for some k > 1, then on this path consump-
tion grows too slowly. It is eventually preferable to raise xt above its implied level

of approximately t
k

γ−1/At. So if limk↓1 R̃(k) < 1, Ct eventually grows more quickly
than (55) for some k > 1 on the optimal path. Conversely, if limk↑1 R̃(k) ≥ 1, Ct

eventually grows more slowly than (55) for k = 1.
If Ct grows more quickly than (55) for some k > 1, then the left-hand side of

(53) falls more quickly than t−k for some k > 1. So ∂δ
∂x
x does as well. Recalling that

δ < ∂δ
∂x
x, this ensures a positive probability of survival.

If Ct grows more slowly than (55) for k = 1, then the left-hand side of (53)
falls more slowly than 1/t. The right-hand side equals ∂δ

∂x
x · v = ηx/δ · v. If ηx is
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upper-bounded, δ falls more slowly than 1/t. Cumulative risk is therefore infinite,
and survival is impossible.

For illustration, let us evaluate the constant elasticity hazard function of Section 3.2
for the case of exponential growth at rate g.

R̃(k) = lim
t→∞

δ̄eαgtβ
(t k

γ−1

egt

)β−1 t
kγ
γ−1

egt
v̄

= δ̄βv̄ lim
t→∞

e−(β−α)gtt
β+γ−1
γ−1

k = 0 (56)

for any k, since β > α. So limk↓1 R̃(k) = 0 < 1. Part (a) of Proposition 6 thus
generalizes the conclusion of (26) that, with hazard function (5), consumption grows
at least as quickly as a sufficient power function (in fact it grows exponentially) and
that there is a positive probability of survival.

By contrast, consider the constant elasticity hazard function but with α = β. In
this case, (56) = ∞ for any k, so limk↑1 R̃(k) = ∞ > 1. Also, ηx is constant at
β, and so upper-bounded. δ(A, x) = Ax is thus an example of a hazard function
satisfying D1–D5 for which the probability of survival on the optimal path is zero
given exponential technology growth (and indeed given any A(·) that is eventually
bounded above zero).

B.3.4 Acceleration and state risk generalized

For any admissible hazard function, the lessons of Section 3.4 are essentially main-
tained. The effect of a temporary level effect on the probability of survival is ambigu-
ous. However, if the probability of survival is positive on the planner-optimal policy
path, given the baseline technology path, then an acceleration to technological devel-
opment increases the probability of survival. If the probability of survival is zero on
the planner-optimal policy path, then an acceleration to technological development
may increase the probability of survival or have no effect.

Proposition 7. Acceleration and state risk generalized
Choose an admissible technology path A(·) and hazard function δ(·).
Given A, ˙̃A with ˙̃A > ȦA,

a) ∆
A, ˙̃A

= δA(
˙̃A−1 − Ȧ−1

A ) < 0.

Given an acceleration Ã(·) from A to A,

b) If X <∞, then X̃ ≤ X +
∫ A

A
∆

A, ˙̃AA
dA < X.

c) If X =∞ and the acceleration is temporary, then X̃ =∞.
If X =∞ and the acceleration is permanent, then X̃ may be finite or infinite.

Proof. See Appendix C.5.
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The intuition is the same as illustrated in Section 3.4. Acceleration in effect hori-
zontally rescales all or part of the hazard curve by leaving less time spent at each
state. It may also induce more stringent policy at each state, in which case the weak
inequality of part (b) is strict.

B.3.5 Discussion

Accelerations vs. level effects — Given a technology path A(·) satisfying A1 and A4,

say that a differentiable technology path Ã(·) is a level effect to A(·) (at time 0) if

∃m > 1 : Ãt = mAt ∀t.

When technology growth is exponential, level effects are (sharp) temporary accelera-
tions. Otherwise, they may be distinct.

Unlike temporary accelerations, level effects do not always decrease cumulative
risk outside the exponential growth context. Consider for example hazard function
(5) with a technology path A(·) that is nearly stagnant for an arbitrarily long period,
say for t ≤ 99; that grows exponentially at t > 99; and for which the implied regime-
change time is t∗ = 100. A level effect—a jump in the technology level at t = 0—then
raises the technology level during the arbitrarily long period of stagnation, which
non-negligibly raises cumulative risk, while lowering cumulative risk only negligibly
by cutting a vertical slice from the hazard curve following t = 99.

The direction of technical change — This is a model in which there is a single di-
mension to technological development. Inventions simply occur in sequence, each of
which increases potential consumption and has some effect on the hazard rate at any
given level of consumption. In practice, however, technological development is surely
at least somewhat directed : tradeoffs between consumption and risk in later periods
are affected by the extent to which policymakers and firms in earlier periods have
developed various types of technology. Consider for example the “richer model” of
Jones (2016), in which increases in the value of life relative to consumption motivate
increases not only in health spending but also in medical R&D.

In positing a baseline sequence of maximum potential consumption levels {At}
and a hazard function δ(A, ·), we are simply describing a path of possibilities frontiers
over time, not embedding any assumptions about how this path is generated. In
particular, we are not assuming that there is only one way it is possible for technology
to unfold. If we posit a wider space of possible production technologies than the
sequence adopted on the baseline path, we must simply clarify that our results only
pertain to “accelerations” in the sense of increases to the rate of motion along the
baseline path. Subsidizing the development of risky technologies that would not
otherwise have been invented, or choosing a technology path on which they are
invented sooner than they would have been but risk-decreasing technologies are not,
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does not necessarily lower cumulative risk.27

In the next section (Appendix B.4), the lessons of this generalized model are used to
explore two particular hazard functions that may be of interest. The first illustrates
that, early in time, the hazard rate may increase alongside smooth declines in x. The
second is “microfounded” by an assumption that increases in safety expenditure lower
risk through redundant safeguards.

B.4 State risk with policy: Two more hazard functions of
interest

We will assume that technology grows at a constant rate g > 0.

B.4.1 A lower Inada condition on safety

As shown in Section 3.3, given a constant elasticity hazard function, δ rises as long as
it remains optimal to maximize consumption, and falls immediately once it becomes
optimal to begin choosing sub-maximal consumption out of concern for safety. This
result is arguably at odds with the experience of the last century, during which the
hazard rate has arguably risen while existential safety expenditures have risen (from
essentially 0). We will therefore here explore how to tweak the hazard function so
that the Kuznets curve is smoothed, and the policy choice variable falls even early in
time while the hazard rate is still rising.

A constant elasticity hazard function generates a distinct pair of regimes for
the same reason here as in Stokey (1998): because, when x = 1, marginal “safety
expenditures”—decreases to x—produce only finite marginal benefits. That is, there
is no “lower Inada condition on safety”. We will say that a hazard function exhibits a
lower Inada condition on safety if limx→1

∂δ
∂x

=∞. Under this condition, it is optimal
to set xt < 1 as long as vt > 0: as long as civilization is worth preserving at all, some
expenditures on existential risk reduction are worthwhile.

27In addition to modeling the policy choice about how much consumption to sacrifice for an in-
stantaneous reduction to the hazard rate, an earlier version of this paper models the technology path
as directed by policy as well. The growth model is semi-endogenous, so total potential technology
growth is driven by exogenous population growth, but research is optimally allocated between risk-
increasing “consumption technology” and risk-decreasing “safety technology”. Conceptually, that
model sheds light on the same question as this one—how acceleration affects cumulative risk, given
an endogenous policy response—but the objects of study are accelerations to population rather than
to technology itself. Numerical estimation suggests that acceleration weakly decreases cumulative
risk in that context as well, for the same reasons as it does here. When population growth is acceler-
ated, and labor is allocated optimally across fields, civilization traverses roughly the same technology
path but more quickly. When future population growth is anticipated to be faster, the value of the
future is higher (due to faster future technological development even if larger populations are not
valued more intrinsically), so optimal policy shifts the technology path in a safer direction.

https://globalprioritiesinstitute.org/wp-content/uploads/Leopold-Aschenbrenner_Existential-risk-and-growth_.pdf
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Not every hazard function with a lower Inada condition on safety behaves like a
smoothed version of a constant elasticity hazard function. If the inverse of the hazard
function is too concave around x = 1 (when A is low), then x may fall rapidly, rather
than mildly, from the outset, yielding no early period during which x ≈ 1. If it is not
concave enough around x = 1, on the other hand, then early decreases to x produce
significant decreases to δ, so that the hazard rate falls even early in time.

One class of hazard functions with the desired features is

δt = δ̄Aα
t x

β
t

1− (1− xt)
ϵ

xt

, ϵ ∈
(1
2
, 1
)
, (57)

where the conditions on parameters other than ϵ are as in (5). The distinction between
the hazard functions is illustrated below for the case of δ̄Aα = 1, ϵ = 0.6, β = 2. The
solid curve represents the old hazard function; the dashed curve represents the new
hazard function, vertical at x = 1.

0 1

1

x

δ

Note that

lim
x→0

1− (1− xt)
ϵ

xt

= ϵ,

so the asymptotics in this case are identical to those in the case of a constant elas-
ticity hazard function (except that the hazard rate is multiplied by ϵ). However, the
transition dynamics are different. Though it is now optimal to set x < 1 as long as
v > 0, x now falls smoothly and δ smoothly rises and falls. The paths of risk and
policy are illustrated below for ϵ = 0.6, A0 = 2.03, and otherwise the same parameter
values as in Table 1.28

28A0 is raised slightly in order to maintain that the value of a statistical life-year “today” (at
t = 75) is four times per capita consumption, and the hazard rate is approximately 0.1%, despite
the fact that, in this model, consumption and the hazard rate are slightly less than maximal even
early in time.
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Figure B1: Evolution of the policy choice and the hazard rate along the optimal
path given a lower Inada condition on safety expenditure

Derivations and code for replicating the simulation may be found in Appendix D.

B.4.2 Safety in redundancy

The constant elasticity hazard function of Sections 3.2–3.4, and its tweak just above,
were chosen for clarity. We might however be interested in a better-founded story
about the shape of the hazard function, in which the hazard rate is determined by the
production of consumption goods and safety goods. For illustration, one relatively
straightforward story would be as follows.

• Each unit of consumption (still produced as Ct = Atxt) poses some risk p of
catastrophe per period in the absence of any safety measures.

• For each unit of the consumption good, if one unit of the safety good (produced
as Ht = At(1 − xt)) is allocated to preventing the production process from
causing a catastrophe, this fails to prevent a catastrophe with probability b̃ < 1.
That is, one unit of H per unit of C multiplies the risk posed by each unit of
C by b̃, from the baseline of p.

• The probability that the production of a given unit of consumption results in
a catastrophe is the probability that (a) there would have been a catastrophe
in the absence of any safety measures and (b) all H/C safety measures fail
independently: pb̃H/C .
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• The probability of survival through a given period is the probability that all C
consumption units, independently, do not generate a catastrophe: (1−pb̃H/C)C .

In discrete time, the story above would correspond to the hazard function

δ(At, xt) = 1−
(
1− pb̃

1−xt
xt

)Atxt
, b̃ ∈ (0, 1). (58)

The continuous-time analog to (58) is

δ(At, xt) = Atxte
−b

1−xt
xt , b > 0 (59)

(see Appendix C.6.1).
Since hazard function (59) lacks any sort of lower Inada condition on 1 − x, x is

fixed at 1, and δ rises, early in time while v > 0. After the relevant calculations,
Propositions 4–6 tell us that (59) yields a Kuznets curve, with δ eventually falling
quickly enough to permit survival.

Proposition 8. Long-run policy and risk given safety in redundancy
Given hazard function (59), the optimal path features

lim
t→∞

xtt =
b

gγ
, (60)

lim
t→∞

gδt = −g(γ − 1). (61)

Proof. See Appendix C.6.2.

Thus the decline in policy choice here is slower than in the constant elasticity case:
x declines proportionally to 1/t, not exponentially. This is because a redundancy-
based model yields a hazard rate that falls rapidly in the policy choice variable: unit
decreases in Atxt, rather than merely proportional increases, generate proportional
decreases to δ. In both cases, however, xt → 0. And in both cases, δt declines
exponentially, and so quickly enough to permit survival.

Comparing (61) to the limiting expression for gδ from Proposition 1, we see that,
in the limit, the hazard rate declines more quickly in the redundancy-based model
than in the original model. This follows from the fact that the extra coefficient on
g(γ − 1) in the limiting expression for gδ from Proposition 1 is less than one:

α > 0, γ > 1 =⇒ β − α

β + γ − 1
< 1.

Intuitively it is because, in a redundancy-based model, smaller consumption sacrifices
(linear rather than proportional) are needed for proportional decreases to the hazard
rate. The planner’s response to this expanded possibilities frontier comes partially
in the form of slower increases in foregone consumption, as described by (60), and
partially in the form of faster declines in the hazard rate, as described by (61).
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B.5 Transition risk: Optimal technology growth

B.5.1 Without policy, optimality of stagnation given ζ = 1

Suppose first that ζ = 1 and α = −1, so that

δt = δ̄
Ȧt

At

.

As noted in the body text, this model is precisely the Russian roulette model of Jones
(2016), with δ̄ representing the variable there denoted π.

Jones finds in his setting that, with γ > 1, it is optimal for technology to grow
only to a finite level Â. In our notation, this is because stagnation at some Â, with
no risk, yields constant flow utility of u(Â) and a constant value of the future of
v(Â) ≡ u(Â)/ρ. It is thus optimal to halt growth at the technology level at which the
future benefits of stagnating at a slightly higher A equal the costs via temporarily
inducing a positive hazard rate:

v′(Â) =
∂δ

∂Ȧ
· v(Â)

=⇒ u′(Â)

ρ
=

δ̄

Â

u(Â)

ρ
(62)

=⇒ Â =
( δ̄ + γ − 1

δ̄

) 1
γ−1

. (63)

When α = −1, we can derive an analytic solution for the optimal technology level
(63) at which to stagnate. Though this is not possible for other values of α, it is easy
to verify that, for any α ≥ −γ, this result does not qualitatively change. Equality
(62) is then modified to

u′(Â)

ρ
= δ̄Âαu(Â)

ρ

=⇒ Â−(α+γ) = δ̄u(Â). (64)

Given α+ γ > 0, the left-hand side falls strictly monotonically from 1 to 0 as Â rises
from 1 to∞. The right-hand side rises strictly monotonically from 0 to δ̄/(γ−1) > 0
as Â rises from 1 to ∞. There is thus a unique Â > 1 at which (64) is satisfied: that
is, at which technology growth is preferred to stagnation iff A < Â.

B.5.2 Without policy, no optimal stagnation given ζ ̸= 1

If we further generalize from ζ = 1 to arbitrary ζ, however, we find that the result
that stagnation is optimal when ζ = 1 is knife-edge.
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Let vt(A(·)) denote the value of the future at t ≥ 0 given technology path A(·). As
baseline, choose a technology path A(·) satisfying A1 and A2.

If ζ < 1, then at every t, and for every technology level A > At, there is a
differentiable and weakly increasing technology path Ã(·) with Ãs = As for all s ≤ t,

Ãt = A for some t > t, and vt(Ã(·)) > vt(A(·)).

To construct such a path, choose t and A > At. Observe that, if ˙̃AA equals a

constant value ˙̃A for A ∈ (At, A), the cumulative risk endured on path Ã(·) from At

to A equals ∫ A

At

δ̄Aα ˙̃Aζ−1dA,

which → 0 as ˙̃A→∞. With ζ < 1, therefore, sufficiently rapid growth from At to A
approximates an immediate, risk-free jump from At to A, as in the state risk “ζ = 0”
case.

Now let

t ≡ min{t : Ãt = A} = A− At

˙̃A
,

t ≡ sup{t : At < A},

noting that t may be infinite, and choose A and ˙̃A so that ˙̃A > Ȧs for all s ∈ [t, t).

This is possible for some sufficiently high ˙̃A by the right-continuous differentiability
of A(·), and ensures that Ãs > As throughout this interval. Suppose that Ãt = A

for t ∈ [t, t] and Ãt = At for t > t—i.e. that the new path halts growth at A until
the old path has caught up, if ever, after which the paths are identical. Then Ã(·)
offers strictly higher consumption than A(·) across (t, t) in exchange for arbitrary little
up-front risk and no subsequent increases in the hazard rate.

Incidentally, this framework makes clear that, in the absence of any costs to
technological development besides transitional existential risk, with ζ < 1 there
is no optimal continuous technology path. An immediate jump in the technology
level is always desirable, and a larger jump is always preferable to a smaller one.
Furthermore, if one introduces R&D costs to the model, an optimal path will exist
only if the costs are sufficiently convex in the speed of technological development.
Otherwise, attempts to identify an optimal technology path will encounter the
“chattering” problem: rapid alternations between slow and fast growth will be
preferred to continuous growth, because they can achieve a given quantity of techno-
logical progress over a given interval of time while contributing less to cumulative risk.

Stagnation is not optimal given ζ < 1 because, due to the “upper Inada condition” on
δ ∝ Ȧζ with ζ < 1, sufficiently fast technological development carries arbitrarily little
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risk per unit of new technology. Stagnation is not optimal given ζ > 1 because, since
limȦ→0

∂δ
∂Ȧ

= 0 when δ ∝ Ȧζ with ζ > 1, sufficiently slow technological development
carries arbitrarily little risk per unit of new technology.

To see this, consider the optimal technology growth rate at t given a technology
path A(·) with At = Â > 1 and Ȧs = 0 for s > t. Unlike in the ζ < 1 case, there is

an optimal technology growth rate to adopt at t: the rate Ȧ∗ that sets the marginal
expected utility benefit (via increased future consumption) of marginally increasing
Ȧ, per unit time that Ȧ is increased, equal to the marginal expected utility cost per
unit time (via an increased hazard rate at t):

v′(Â) = δ̄ÂαζȦ∗ζ−1v(Â)

=⇒ Ȧ∗ =

(
γ − 1

δ̄
· Â

−(α+γ)

1− Â1−γ

) 1
ζ−1

> 0.

Likewise, given a technology path A(·) with limt→∞At = Â < ∞, the optimal
technology growth rate must satisfy the equality above in the limit. Since A(·) cannot

approach a finite upper asymptote if Ȧ is bounded above zero, no such technology
path is optimal.

B.5.3 With policy, analogous results for ζ-threshold 1 + β
γ−1

Throughout this section we will assume hazard function (27) with ζ > 0:

δt = δ(At, Ȧt, xt) = δ̄Aα
t Ȧ

ζ
tx

β
t δ̄ > 0, ζ > 0, β > 1.

For simplicity we will also assume that the baseline technology path features stag-
nation at technology level Â. We will then consider the impact per unit time of an
instantaneous marginal increase to the technology growth rate Ȧt.

We will see that, in the ζ < 1+ β
γ−1

case, as in the ζ < 1 case without policy, there
is no optimal growth rate: sufficiently fast growth is always preferable to stagnation.
In the ζ > 1 + β

γ−1
case, as in the ζ > 1 case without policy, growth may be “too

fast”, but there is still no technology level at which it is optimal to stagnate.
However, the ζ = 1 + β

γ−1
case is not closely analogous to the ζ = 1 case without

policy. Instead, for low values of Â it resembles the ζ < 1 + β
γ−1

case, with no

optimal technology growth rate, and for high values of Â it resembles the ζ < 1+ β
γ−1

case, in which slow growth is preferable both to fast growth and to stagnation.
Intuitively, this is because ζ = 1 + β

γ−1
implies ζ > 1. Since slow growth without

policy is preferable to stagnation given ζ > 1, and since introducing the option to
mitigate risk with xt < 1 does not remove the option of slow growth without policy,
introducing the policy option cannot render stagnation optimal.
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In this setting, there are two state variables: St and At. There are two choice variables:
policy xt and the technology growth rate Ȧt.

29 Given St = 1, the marginal net
impacts on expected utility of a marginal increase in Ȧt, per unit time, is given by
the respective derivative of the Hamiltonian expression

u(Â, xt)− vtδ(Â, Ȧt, xt) + atȦt (65)

(adapted from Appendix A.1 below), where a is the costate variable on technology.
Under the xt ≤ 1 constraint, the optimal choice of xt given Ȧt is given by the first

order conditions ∂L/∂xt = 0, ∂L/∂µt ≥ 0, µt∂L/∂µt = 0 on the Lagrangian

L = u(Â, xt)− vtδ(Â, Ȧt, xt) + atȦt + µ(1− xt). (66)

This reduces to

xt = min
(
1,
(
δ̄βÂα+γ−1Ȧζ

t v(Â)
)− 1

β+γ−1
)
, (67)

with µt > 0 iff the second term of the above minimum—the unconstrained optimal
choice of xt—is greater than 1. (This is adapted from (37)–(38).)

To find the marginal net impact on expected utility of a marginal increase in
Ȧt per unit time, given that xt is set optimally in response, we can take the first
derivative of (66) with respect to Ȧt and evaluate it at xt = (67). Because (65) and
(66) are continuously differentiable in Ȧt, xt, and µt, by the envelope theorem we
can differentiate (66) with respect to Ȧt and then substitute xt = (67), rather than
accounting for the impact of changing Ȧt on the choice of xt by substituting (67) into
(65) and differentiating the result with respect to Ȧt.

Finally, given technology level At = Â and permanent stagnation after t, the value
of the costate variables at t are straightforward. The value of [saving] civilization at
t is v(Â), and the value of a marginal increase in the technology level is the value of
an equal marginal increase in consumption at all future periods:

vt = v(Â) =
1

ρ
· Â

1−γ − 1

1− γ
,

at = v′(Â) =
Â−γ

ρ
.

The marginal net impact on expected utility of a marginal increase in Ȧt per unit

29It would be equivalent, and more standard but in this case more complex, to define a new choice
variable ϕt such that the technology law of motion is Ȧt = ϕt.
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time is therefore

d(Ȧt) ≡
Â−γ

ρ
− v(Â)δ̄ÂαζȦζ−1

t xβ
t (68)

=
Â−γ

ρ
− v(Â)δ̄ÂαζȦζ−1

t , Ȧt < Ȧt;

=
Â−γ

ρ
− ζ
(
δ̄1−γv(Â)1−γÂ(β−α)(γ−1)ββ

)− 1
β+γ−1

Ȧ
ζ γ−1
β+γ−1

−1

t , Ȧt ≥ Ȧt,

where

Ȧt ≡
(
δ̄βÂα+γ−1v(Â)

)− 1
ζ

is the maximum growth rate at which it is optimal to set xt = 1, and v(Â) is as
defined above.

If ζ < 1 + β
γ−1

, then the exponent on Ȧt in (68) is negative for Ȧt ≥ Ȧt, so

lim
Ȧt→∞

d(Ȧt) = Â−γ/ρ > 0.

As in the ζ < 1 case without policy, this guarantees that sufficiently fast technology
growth is always preferable to stagnation.

If ζ > 1 + β
γ−1

, then the exponent on Ȧt in (68) is always positive. There is thus

a unique and positive value of Ȧt that sets d(Ȧt) = 0, and this is the optimal choice
of Ȧt. Sufficiently slow technology growth is always preferable to stagnation.

If ζ = 1+ β
γ−1

, then the exponent on Ȧt in (68) is positive for Ȧt < Ȧt and zero for

Ȧt ≥ Ȧt. So if d(Ȧt) > 0, there is no optimal growth rate: from the At = Â margin,
it is desirable, albeit perhaps briefly, to have technology grow as quickly as possible.
If d(Ȧt) < 0, there is a unique value of Ȧt that sets d(Ȧt) = 0, it lies in (0, Ȧt), and
it is optimal.

Technically, if d(Ȧt) = 0, then any Ȧt ≥ Ȧt is optimal at At = Â; but once At > Â,

we will have d(Ȧt) < 0, and a unique optimal growth rate which is positive but finite.

C Supplemental proofs

C.1 Proof of Proposition 3

The proof is similar to the proof of Proposition 7a (Appendix C.5.1), which generalizes
Proposition 2. As there, vA+ϵ is continuous in ϵ and ṽA+ϵ[ϵ] = vA+ϵ for all ϵ. In
this setting, however, we cannot assume that ṽA[ϵ] weakly increases in A or that
ṽA[ϵ] ≥ vA for all ϵ. We will therefore use a different strategy to uniformly bound
ṽA[ϵ], for A ∈ [A,A + ϵ], in an interval whose maximum and minimum converge to
vA as ϵ→ 0.
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Let t denote the time at which At = A. An acceleration Ã(·), featuring technology

growth rate ˙̃A > ȦA until technology level A+ ϵ, features technology growth at rate
˙̃A across times

(t, t+ ϵ/ ˙̃A).

More generally, the acceleration path reaches technology level A ∈ [A,A+ ϵ] at time

t̃(A) ≡ t+ (A− A)/ ˙̃A.

ṽA[ϵ] is the maximum value of survival ṽt̃(A), across feasible policy paths, achievable

at t̃(A) given technology path Ã(·)[ϵ]. It can thus be lower-bounded by one such

achievable value of survival, such as that achieved given xt = 1 for t ∈ [t̃(A), t+ ϵ/ ˙̃A).
Since Ãt > 1 throughout this interval, this lower bound is in turn strictly greater than
the value of survival at t̃(A) given no flow utility enjoyed throughout the interval.

Remembering that ṽA+ϵ[ϵ] = vA+ϵ > 0 for any ϵ, we thus have

ṽA[ϵ] ≥
∫ t+ϵ/ ˙̃A

t̃(A)

e−ρ(t−t̃(A))e−
∫ t
t̃(A) δ̄Ã

α
s

˙̃Aζdsu(Ãt)dt

+ e−ρ(t+ϵ/ ˙̃A−t̃(A))e
−

∫ t+ϵ/ ˙̃A

t̃(A)
δ̄Ãα

s
˙̃Aζds

vA+ϵ

> vA[ϵ] ≡ e−ρ(t+ϵ/ ˙̃A−t̃(A))e
−

∫ t+ϵ/ ˙̃A

t̃(A)
δ̄Ãα

s
˙̃Aζds

vA+ϵ. (69)

Because t̃(A) increases in A, vA[ϵ] increases in A, so vA[ϵ] ≥ vA[ϵ] for all A ∈ [A,A+ϵ].

ṽA[ϵ] can be upper-bounded by the (infeasible) value of survival achieved at t̃(A)

given that, at t ∈ [t̃(A), t + ϵ/ ˙̃A), flow utility equals its supremum of 1/(γ − 1) and
the hazard rate equals 0:

ṽA[ϵ] <
1

γ − 1

∫ t+ϵ/ ˙̃A

t̃(A)

e−ρ(t−t̃(A))dt+ e−ρ(t+ϵ/ ˙̃A−t̃(A))vA+ϵ

< vA[ϵ] ≡
1

γ − 1

∫ t+ϵ/ ˙̃A

t̃(A)

e−ρ(t−t̃(A))dt+ vA+ϵ. (70)

Because t̃(A) increases in A, vA[ϵ] decreases in A, so vA[ϵ] ≥ vA+ϵ[ϵ] for all A ∈
[A,A+ ϵ].

From (69), (70), the continuity of vA+ϵ in ϵ, and the fact that ṽA+ϵ[ϵ] = vA+ϵ for
all ϵ,

lim
ϵ→0

vA[ϵ] = lim
ϵ→0

vA+ϵ[ϵ] = vA.

The proof then proceeds along the lines of the proof of Proposition 7 after (91),
with

x̃A[ϵ] = min
(
1,
(
δ̄βAα+γ−1 ˙̃Aζ ṽA[ϵ]

)− 1
β+γ−1

)
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in place of (92), ultimately yielding

∆
A, ˙̃A

= δ(A, ˙̃A, x̃A)
˙̃A−1 − δ(A, ȦA, xA)Ȧ

−1
A , (71)

where x̃A is given by (29), at A = A, with ˙̃A in place of ȦA.
If A ≥ A∗, (71) reduces to(

δ̄1−γββA(β−α)(γ−1)vβA
)− 1

β+γ−1

(
˙̃Aζ γ−1

β+γ−1
−1 − Ȧ

ζ γ−1
β+γ−1

−1

A

)
.

Since ˙̃A > ȦA, this is negative if ζ < 1 + β
γ−1

, zero if ζ = 1 + β
γ−1

, and positive if

ζ > 1 + β
γ−1

.

If A < A∗, so that xA = 1, and ˙̃A is small enough to maintain x̃A = 1, then (71)
reduces to

δ̄Aα
( ˙̃Aζ−1 − Ȧζ−1

A

)
.

Since ˙̃A > ȦA, this is negative if ζ < 1, zero if ζ = 1, and positive if ζ > 1.

C.2 Proof of Proposition 4

Suppose that R∗ ≤ 1, and, by contradiction, that we do not have C∗ =∞.
By the failure of C∗ =∞, there is an increasing and unbounded sequence of times,

tn →∞, such that Ctn ≤ C ∀n ≥ 1.
Consider the sequence of consumption levels nC ∀n ≥ 1. Since nC → ∞, by

R∗ ≤ 1 we have

lim
n→∞

R(nC) = lim
n→∞

lim
A→∞

∂δ

∂x

(
A,

nC

A

) (nC)γ

Aρ(γ − 1)
≤ 1. (72)

By D5, ∂δ
∂x
(A, x) weakly increases in x for any A. So

R(Ctn) ≤ R(nC)
(Ctn

nC

)γ
≤ R(nC)n−γ ∀n, (73)

where the first inequality follows from the fact that nC ≥ Ctn for each n, and the
second follows from C ≥ Ctn for each n. By (72), R(nC)n−γ < 1 for sufficiently large
n, so by (73) and A4, there exists an n such that

∂δ

∂x

(
Atn ,

Ctn

Atn

) Cγ
tn

Atnρ(γ − 1)
< 1 ∀n > n.

Since vt cannot exceed
1

ρ(γ−1)
,

∂δ

∂x

(
Atn ,

Ctn

Atn

)
vtn < AtnC

−γ
tn ∀n > n.
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This is compatible with optimality only if xtn = 1. But this is impossible for
sufficiently large n, since Ctn = Atnxtn ≤ C and limn→∞ Atn =∞.

Suppose that R∗ > 1 and, by contradiction, that C∗ = ∞. Then there is some C
such that R(C) > 1:

lim
A→∞

∂δ

∂x

(
A,

C

A

) Cγ

Aρ(γ − 1)
> 1.

So there is an A such that

∂δ

∂x

(
A,

C

A

) 1

ρ(γ − 1)
> AC−γ (74)

for all A ≥ A. Furthermore, because the left-hand side weakly increases in C by D5
and the right-hand side strictly decreases in C, (74) holds for all A ≥ A and C ≥ C.
By A4, and the supposition that C∗ =∞, there is a t such that

∂δ

∂x

(
At,

Ct

At

) 1

ρ(γ − 1)
> AtC

−γ
t ∀t ≥ t. (75)

Finally, optimality requires

A1−γ
t x−γ

t ≥
∂δ

∂xt

(
At, xt

)
vt ∀t

=⇒ (Atxt)
1−γ/vt ≥

∂δ

∂xt

(
At, xt

)
xt ≥ δ(At, xt),

with the final inequality holding because, by D5, ∂δ
∂x
x ≥ δ. Given C∗ =∞, since vt is

upper-bounded, it follows that δt → 0. With δt → 0 and Ct → ∞, vt approaches its
upper bound of 1

ρ(γ−1)
.

It therefore follows from (75) that, for sufficiently large t,

∂δ

∂x

(
At,

Ct

At

)
vt > AtC

−γ
t .

This is incompatible with optimality. Thus, if R∗ > 1, it is impossible that C∗ =∞.

C.3 Proof of Proposition 5a

C.3.1 Preliminaries

It is optimal to set xt = 1 as long as, at x = 1, the marginal flow disutility of
decreasing x weakly exceeds the marginal expected utility of doing so via decreasing
the hazard rate:

A1−γ
t ≥ ∂δ

∂x
(At, 1) vt. (76)
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It is optimal to set xt < 1 as long as (76) fails, maintaining

A1−γ
t x−γ

t =
∂δ

∂x
(At, xt) vt (77)

=⇒ xt = A
1−γ
γ

t

(∂δ
∂x

(At, xt) vt

)− 1
γ
. (78)

The uniqueness of the optimal path is shown in Appendix A.1.

C.3.2 Proof that limt→−∞ xt = 1

We will show that there exists a time t such that vt ≤ 0. It then follows immediately
that xt = 1 for t ≤ t.

Let

T ≡ A−1
(
(γ − 1)

1
1−γ
)

denote the time at which AT = (γ − 1)
1

1−γ , and at which therefore u(AT ) = −1. If
vT ≤ 0, the result follows immediately. Let us therefore assume that vT > 0.

For t < T ,

vt =

∫ ∞

t

e−ρ(s−t)−
∫ s
t δqdqu(Cs)ds

=

∫ T

t

e−ρ(s−t)−
∫ s
t δqdqu(Cs)ds + e−ρ(T−t)−

∫ T
t δqdqvT . (79)

Since u(Cs) ≤ u(As) ≤ −1 for s ≤ T , the first term of (79) is negative—indeed,
an integral over s of values which are negative for all s. The integral is shrunk
in magnitude when, for all s, u(Cs) is replaced with −1 and the discount factor
e−ρ(s−t)−

∫ s
t δqdq replaced with its minimum value across the range, namely the discount

factor at T . So

vt < (t− T + vT )e
−ρ(T−t)−

∫ T
t δqdq

=⇒ vT−vT < 0.

This proof admittedly “takes the model too literally”, in assuming that technology
growth has always been exponential and that therefore life was not worth living
before some point in the past. Still, the dynamic it bluntly illustrates should not
be controversial. When γ > 1, proportional sacrifices in consumption—decreases to
x—carry greater utility costs the lower the baseline consumption level is. Early in
time, the discounted value of civilization v and the baseline consumption level A were
both low, so large sacrifices for safety would not have been optimal.
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C.3.3 Proof that limt→∞ xt = 0 if ηA is bounded above 1− γ

Generalizing (78), whether or not the xt ≤ 1 constraint binds we have

xt ≤ A
1−γ
γ

t

(∂δ
∂x

(At, xt) vt

)− 1
γ
. (80)

We will show that if ηA(·) is bounded above 1− γ, the right-hand side has an upper
bound which falls to 0 as (by A4) At →∞.

Because by D1 δ is positive, by D2 and D5 we have ∂δ
∂x
(At, xt) ≥ δ(At, xt). The

right-hand side is thus bounded above by

A
1−γ
γ

t

(
δ(At, xt)vt

)− 1
γ . (81)

Fixing x and v, the elasticity of this upper bound with respect to A is (1 − γ −
ηA(A, x))/γ. Since this is here bounded below 0, (81) tends to 0 as A→∞. Finally,
vt is positive for all t ≥ 0, because by A1 and A2 At > 1 for all t ≥ 0 (rendering
vt > 0 feasible with x = 1 permanently), and vt does not fall because sufficient
precautions on new technology—e.g. banning its use—allow the consumption path to
be maintained without increasing risk, by D4. Therefore, if ηA(·) is bounded above
1− γ, maintaining optimality condition (80) as At →∞ requires xt → 0.

C.4 Proof of Proposition 6

If limk↓1 R̃(k) < 1, there is a k > 1 such that

lim
t→∞

∂δ

∂x

(
At,

t
k

γ−1

At

) t
kγ
γ−1

Atρ(γ − 1)
< 1. (82)

Choose k ∈ (1, k). Suppose that ∄t : Ct > t
k

γ−1 ∀t > t. Then there is an increasing
and unbounded sequence of times, {tn} → ∞, such that

Ctn ≤ t
k

γ−1
n ∀n ≥ 1. (83)

Observe that

lim
n→∞

∂δ

∂x

(
Atn ,

t
k

γ−1
n

Atn

) t
kγ
γ−1
n

Atnρ(γ − 1)

≤ lim
t→∞

∂δ

∂x

(
At,

t
k

γ−1

At

) t
kγ
γ−1

Atρ(γ − 1)
· t−

k−k
γ−1

γ = 0, (84)

where the inequality follows from the fact that, by D5, ∂δ
∂x
(A, x) weakly increases in

x, and the limit before the t−
k−k
γ−1

γ term is less than 1 by (82).
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By (83), (84), and the fact that vt <
1

ρ(γ−1)
for all t, there is an n such that, for

all n ≥ n,

∂δ

∂x

(
Atn ,

Ctn

Atn

)
vtn < AtnC

−γ
tn .

This is compatible with optimality only if xtn = Atnxtn = 1. But this is impossible
for sufficiently large n, by (54) and (83).

So for some k > 1,

∃t : Ct > t
k

γ−1 ∀t > t. (85)

So (85) holds for k = 1 as well.

Given (85) for some k > 1, we have, for some t and some k ∈ (1, k), that for all t > t

(Atxt)
1−γ < t−k

=⇒ ∂δ

∂x
(At, xt)xt vt < t−k

=⇒ δtvt < t−k

=⇒ δt < t−k. (86)

The first implication follows from the fact that A1−γ
t x−γ

t ≥ ∂δ
∂x
(At, xt)vt whether or

not x is interior. The second follows from the fact that δ < ∂δ
∂x
x by D1 and D5. The

third follows from the fact that vt is eventually positive and does not fall to zero.
δt is uniformly bounded from 0 to t by maxA∈[A0,At] δ(A, 1), which exists and

is finite by the continuity of δ(·) (D3). It follows from this and from (86) that S∞ > 0.

If limk↑1 R̃(k) > 1, there is a k < 1 and an s such that

∂δ

∂x

(
At,

t
k

γ−1

At

) t
kγ
γ−1

Atρ(γ − 1)
> 1 ∀t > s. (87)

Suppose by contradiction that ∄t : Ct < t
1

γ−1 ∀t > t. Then there is an increasing
and unbounded sequence of times, {tn} → ∞, such that

Ctn ≥ t
1

γ−1
n ∀n ≥ 1. (88)

Observe that

lim
n→∞

∂δ

∂x

(
Atn ,

t
1

γ−1
n

Atn

) t
γ

γ−1
n

Atnρ(γ − 1)

≥ lim
t→∞

∂δ

∂x

(
At,

t
k

γ−1

At

) t
kγ
γ−1

Atρ(γ − 1)
· t

1−k
γ−1

γ =∞, (89)
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where the inequality follows from the fact that, by D5, ∂δ
∂x
(A, x) weakly increases in

x, and the limit before the t
1−k
γ−1

γ term is greater than 1 by (87).
By (88), (89), and the fact that vt ̸→ 0, there is an n such that

∂δ

∂x

(
Atn ,

Ctn

Atn

)
vtn > AtnC

−γ
tn .

This is incompatible with optimality. So

∃t : Ct < t
1

γ−1 ∀t > t. (90)

By (90) and (54), xt → 0. So there exists a t ≥ t such that, for all t > t, the choice
of x is interior

∂δ

∂x
(At, xt)vt = A1−γ

t x−γ
t

and so, by (90),

∂δ

∂x
(At, xt)xt vt = C1−γ

t > 1/t.

Since ηx ≡ ∂δ
∂x

x
δ
,

ηx(At, xt)δ(At, xt) vt > 1/t ∀t ≥ t.

Recall that an interior choice of xt implies that vt > 0, that v is upper-bounded by
1

ρ(γ−1)
, and that δt > 0 by D1. So ηx > 0 ∀t ≥ t. So if ηx is upper-bounded by ηx,

δ(At, xt) >
ρ(γ − 1)

ηx
· 1
t
∀t ≥ t.

So S∞ = 0.

C.5 Proof of Proposition 7

Choose an admissible technology path A(·) and hazard function δ(·).

C.5.1 Proof of part a

Choose A, ˙̃A with ˙̃A > ȦA. Define x̃A[ϵ] as x̃A given acceleration Ã(·)[ϵ], etc.
vt is weakly increasing and continuous (indeed differentiable; see Appendix A.1) in

t. Since At is continuous, increasing, and invertible in t, vA is continuous and weakly
increasing in A. vA+ϵ is therefore continuous and weakly increasing in ϵ.

From technology level A+ ϵ onward, the technology paths, and thus the paths of
both consumption and the hazard rate, are identical under A(·) and Ã(·). So for any
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ϵ (including 0), ṽA+ϵ[ϵ] = vA+ϵ. From this, the fact that ṽA[ϵ] is weakly increasing in
A, and the fact that ṽA[ϵ] ≥ vA for all ϵ, we have that for all ϵ

ṽA[ϵ] ∈ [ṽA, ṽA+ϵ] ⊆ [vA, vA+ϵ] ∀A ∈ [A,A+ ϵ]. (91)

Then by the continuity of vA+ϵ in ϵ, for any ϵ1 there is an ϵ such that |vA+ϵ − vA| <
ϵ1 ∀ϵ < ϵ.

Adapting (37),

x̃A[ϵ] = min
(
1, x :

∂δ

∂x
(A, x)Aγ−1xγ =

1

ṽA[ϵ]

)
. (92)

By (92) and A2, ṽA[ϵ] ≥ vA > 0 for all ϵ ≥ 0, A ∈ [A,A + ϵ]. By D3, the implicit
function theorem, and the continuity of min(·), x̃A[ϵ] is continuous in ṽA[ϵ]. So by
(91) and the sentence following it, for any ϵ2 there is an ϵ such that, for all ϵ < ϵ,∣∣∣x̃A[ϵ]−min

(
1, x :

∂δ

∂x
(A, x)Aγ−1xγ =

1

vA

)∣∣∣ < ϵ2 ∀A ∈ [A,A+ ϵ].

Again by D3, the implicit function theorem, and the continuity of min(·), the
second term in the absolute value is continuous in A. So for any ϵ3 there is an ϵ such
that, for all ϵ < ϵ,∣∣∣x̃A[ϵ]−min

(
1, x :

∂δ

∂x
(A, x)Aγ−1xγ =

1

vA

)∣∣∣ = ∣∣x̃A[ϵ]− xA

∣∣ < ϵ3 ∀A ∈ [A,A+ ϵ].

With this uniform convergence, since

X̃[ϵ]−X =

∫ A+ϵ

A

δ
(
A, x̃A[ϵ]

) ˙̃A−1dA−
∫ A+ϵ

A

δ(A, xA)Ȧ
−1
A dA,

since δ(·) is continuous in both arguments, since xA is continuous in A, and since Ȧ−1
A

is right-continuous in time and thus (by continuity and monotonicity of A(·)) in A,

∆
A, ˙̃A
≡ lim

ϵ→0

X̃[ϵ]−X

ϵ
= δ(A, xA)

˙̃A−1 − δ(A, xA)Ȧ
−1
A

= δA
( ˙̃A−1 − Ȧ−1

A

)
.

This proves (a).

C.5.2 Proof of part b

Let Ã(·) be an acceleration to A(·) from A to A. By the definition of an acceleration
and the definition of cumulative risk,

X̃ = X +

∫ A

A

(
δ
(
A, x̃A

) ˙̃A−1
A − δ(A, xA)Ȧ

−1
A

)
dA. (93)
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For all A ∈ [A,A), we have ṽA ≥ vA, and thus, by (92) (dropping the “[ϵ]” arguments)
and D5, x̃A ≤ xA. D1, D2, and D5 imply that δ(·) weakly increases in x, so δ(A, x̃A) ≤
δ(A, xA). So

δ
(
A, x̃A

) ˙̃A−1
A − δ(A, xA)Ȧ

−1
A ≤ ∆

A, ˙̃AA
∀A ∈ [A,A].

This proves (b).

C.5.3 Proof of part c

If A < ∞, the integral of (93) finite. So given a technology path A(·) for which

X =∞ and an acceleration to A <∞, X̃ =∞. This proves the first part of (c).

To prove the second part of (c), it will suffice to find a hazard function δ(·) and
technology path A(·) for which X =∞ and a pair of accelerations Ã(·) to A =∞, for

one of which X̃ is finite and for the other of which X̃ is infinite. We have already
encountered both.

For a case of the former, consider the hazard function δ(At, xt) = Atxt, discussed
following Proposition 6. As discussed there, cumulative risk given optimal policy is
then infinite for any technology path eventually bounded above zero.

For a case of the latter, consider hazard function (5)—δ(At, xt) = δ̄Aα
t x

β
t —with

baseline technology path At = (t− 1)k (t ≥ 0) and acceleration Ãt = (t− 1)k̃ (t ≥ 0),
where

k ≤ β + γ − 1

(α− β)(γ − 1)
< k̃.

To verify that this is an acceleration, At = (t − 1)k =⇒ t = 1 + A
1
k
t , so Ȧt =

k(t− 1)k−1 =⇒ ȦA = kA
k−1
k , which increases in k given A > 1 (so, for t > 0).

As shown in (26), here X =∞ and X̃ <∞.

C.6 Safety in redundancy

C.6.1 From discrete to continuous

Suppose a unit of production carries a constant flow probability δ̄ of triggering an
existential catastrophe, so that, in the absence of any safeguards, the probability that
it does not trigger a catastrophe after s units of time is e−δ̄s. To be consistent with
the discrete-time specification that the probability that it triggers a catastrophe after
1 unit of time equals p, we have 1− e−δ̄ = p and thus δ̄ = − log(1− p).

With 1−xt

xt
units of safeguards maintained around t, since each unit multiplies the

probability of a catastrophic failure per unit time by a factor b̃ ∈ (0, 1), we have that

the probability that a catastrophe is avoided until t+ s equals e−δ̄b̃
1−x
x s.
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The probability that Atxt equally-safeguarded units of production all avoid catas-
trophe until t+ s is thus

(
e−δ̄b

1−xt
xt s
)Atxt

= e−δ̄b
1−xt
xt Atxt s. (94)

So the probability of a catastrophe by s given locally constant A, x equals 1-(94), and
the hazard rate—the probability of catastrophe per unit time—at time t precisely is

δt ≡ lim
s→0

(
1− e−δ̄b

1−xt
xt Atxt s

)
/s = δ̄Atxtb̃

1−xt
xt .

Letting b ≡ − log(b̃) > 0 yields

δt = δ̄Atxte
−b

1−xt
xt .

C.6.2 Proof of Proposition 8

By Appendix A.1, there is a unique optimal path. By the reasoning following (9),
the optimal choice of x is 1 until the (unique) time at which

∂u

∂xt

(At, xt) =
∂δ

∂xt

(At, xt) vt (95)

at xt = 1, after which the optimal choice of xt is interior and maintains equality (95).
Differentiating the utility function and hazard function (59), we have

A1−γ
t x−γ

t = δ̄Ate
−b

1−xt
xt

(
1 +

b

xt

)
vt

=⇒ 1

vt
= δ̄Aγ

t e
−b

1−xt
xt

(
xγ
t + bxγ−1

t

)
. (96)

Because vt increases monotonically and is upper-bounded, it is asymptotically
positive and constant, by the monotone convergence theorem.

We must have Ct →∞. If we do not, then there is a unbounded sequence of times
tn and a consumption level C such that

xtn ≤ C/Atn ∀n. (97)

Substituting (97) into (96), and recalling that Atn → ∞, this would imply that the
right-hand side of (96) tends to 0 across {tn}, and thus that it is not asymptotically
positive.

From (96),

1

vt
= δtC

γ−1
t (1 + b/xt).
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Since Cγ−1
t →∞, xt cannot be negative, and 1/vt ̸→ ∞, it follows that δt → 0.

Since Ct →∞ and δt → 0, vt → v̄.

Divide both sides of (96) by δ̄Aγ
0 , and take the log and then the limit. With

κ ≡ log
(
A−γ

0

1

ρ(γ − 1)δ̄

)
,

we have

lim
t→∞

[
gγt− b

1− xt

xt

+ log
(
xγ
t + bxγ−1

t

)]
= κ

=⇒ lim
t→∞

xt

1− xt

t = lim
t→∞

b

gγ − κ/t+ log
(
xγ
t + bxγ−1

t

)
/t
.

Other than gγ, the terms in the denominator on the right-hand side must converge to
0. This would be avoided only if there were an unbounded sequence of times tn across
which xtn grew at least exponentially with time, which is impossible, or shrank at
least exponentially with time, which would send the right-hand side of (96) to zero.
So

lim
t→∞

xt

1− xt

t =
b

gγ

=⇒ lim
t→∞

xtt = lim
t→∞

(1− xt)
b

gγ
=

b

gγ

=⇒ lim
t→∞

xt
gγ

b
t = 1,

since xt → 0. It then follows from the hazard function that, in the limit, δ falls to 0
at exponential rate −g(γ − 1) < 0.

D Transition dynamics for simulations

For simulating the transition dynamics, it is helpful to find ẋt and δ̇t as functions of
t and xt in the regime where x is interior.

Hazard function (5), used throughout Sections 3.2–3.4 and used to simulate
Figure 3, is the special case of hazard function (57), used to simulate Figure B1,
with ϵ = 1. The calculations below therefore apply to both simulations.

FOC:

∂u

∂xt

(At, xt) =
∂δ

∂xt

(At, xt)vt

=⇒ A1−γ
t x−γ

t = δ̄Aα
t x

β−2
t

(
(β − 1)

(
1− (1− xt)

ϵ
)
+ ϵxt(1− xt)

ϵ−1
)
vt.



29

Rearranging and differentiating gives

vt =
1

δ̄

A1−γ−α
t x2−γ−β

t

(β − 1)
(
1− (1− xt)ϵ

)
+ ϵxt(1− xt)ϵ−1

(98)

=⇒ v̇t = vt

(
(1− γ − α)g + (2− γ − β)

ẋt

xt

(99)

− ϵ
β − (ϵ+ β − 1)xt

(β − 1)(1− xt)1−ϵ + 1− β + (ϵ+ β − 1)xt

ẋt

1− xt

)
.

From the first-order condition with respect to the state variable St,

v̇t = vt(ρ+ δt)− u(ct)

= vt

(
ρ+ δ̄Aα

t x
β−1
t (1− (1− xt)

ϵ)
)
− (Atxt)

1−γ − 1

1− γ
. (100)

Substituting (98) into (99) and (100), setting the results equal, and solving for ẋt

yields

ẋt = xt

(
(β − 1)(1− xt)

1−ϵ + 1− β + (ϵ+ β − 1)xt

)
(1− xt)(

(2− γ − β)
(
(β − 1)(1− xt)

1−ϵ + 1− β

+ (ϵ+ β − 1)xt

)
(1− xt)− ϵ(β − (ϵ+ β − 1)xt)xt

)−1

(
ρ+ δ̄Aα

t x
β−1
t (1− (1− xt)

ϵ)− g(1− α− γ)− (101)

(Atxt)
1−γ − 1

1− γ
δ̄Aα+γ−1

t xβ+γ−2
t

(
(β − 1)(1− (1− xt)

ϵ) + ϵxt(1− xt)
ϵ−1
))

.

Differentiating the hazard function (57) with respect to t yields

δ̇t = δ̄Aα
t x

β
t

1− (1− xt)
ϵ

xt

(
αg + (β − 1)

ẋt

xt

+ ϵ
(1− xt)

ϵ

1− (1− xt)ϵ
ẋt

1− xt

)
. (102)

Scripts for replicating Figures 3 and B1 using (101) and (102),
and the estimate of S∞ following Figure 3, are provided here:
https://philiptrammell.com/static/ERAG code.zip.

https://philiptrammell.com/static/ERAG_code.zip
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