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Abstract

Consider longtermism: the view that the morally best options available to us, in many im-

portant practical decisions, are those that provide the greatest improvements in the (ex ante)

value of the far future. Many (but not all) who accept longtermism do so because they accept an

impartial, aggregative theory of moral betterness in conjunction with expected value theory. But

such a combination of views results in absurdity if the (impartial, aggregated) value of human-

ity’s future is undefined—if, e.g., the probability distribution over possible values of the future

resembles the Pasadena game, or a Cauchy distribution. In this paper, I argue that our evidence

supports such a probability distribution—indeed, a distribution that cannot be evaluated even

by extensions of expected value theory that have so far been proposed. I propose a new method

of extending expected value theory, which allows us to deal with this distribution and to salvage

the case for longtermism. I also consider how risk-averse decision theories might deal with such

a case, and offer a surprising argument in favour of risk aversion in moral decision-making.

Keywords: Pasadena game; expected value theory; expected utility theory; longtermism; risk

aversion; relative expectation theory; principal value theory.
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1 Introduction

If an agent wishes to choose the morally best options available to them, one strategy they might take

is to choose options that most improve the long-term future. This is the strategy recommended (in

at least some situations) by longtermism: the view that the best options available to us, at least in

many important practical decisions, are those that most increase the ex ante moral value of the far

future (Greaves and MacAskill, 2021, p. 3).1

Is longtermism true? One reason to think so is that it seems to follow from the conjunction

of several highly plausible moral claims, combined with some empirical observations. (Note that

this is far from the only possible justification for longtermism—many different views of moral and

instrumental betterness have similar implications.)2 But this justification for longtermism faces a

serious problem. As I show in this paper, those same give us a reductio ad absurdum in practice—they

imply that no available option is ever better than any other. In fact, they do not imply longtermist

verdicts; they imply no practical verdicts at all!

But, first, what are these plausible-sounding claims that seem to justify longtermism? The first is

Impartiality : that the moral value of a life does not depend intrinsically on when or where it occurs;

that a human life lived millions of years in the future would be no more or less valuable than an

otherwise identical life lived today.3 By an impartial view, the total sum of value across the future

may be astronomical—if humanity survives for long enough, an astronomical number of future people

may exist, each contributing a similar amount of value to the total.

The second claim is that those total sums of value determine how we should compare outcomes

morally. Call this Aggregation, the claim that: an outcome is at least as good as another if and only

if the former contains at least as great a total sum of the value of individual lives. And if we combine

Aggregation with Impartiality, then it follows that it would be far better to improve many trillions

of future lives than it would be to improve far fewer present lives by the same amount.

The third claim is that, when comparing risky options, expected (moral) value theory holds.

This common approach (when combined with the above) says that the morally best lotteries over

outcomes are those with the highest expected moral value—the highest probability-weighted sum of

(total, moral) value.

Consider one prospect that has a certainty of improving present or near-future lives, and a second
1Note that this is an axiological thesis, rather than a deontic one. Greaves and MacAskill (2021) present both

axiological and deontic versions of what they call strong longtermism. The view I will focus on throughout, defined
here, is approximately equivalent to their axiological strong longtermism.

2See, for instance, Tarsney and Thomas (n.d.), Thomas (n.d.), Buchak (n.d.), and Greaves and MacAskill (2021,
§6).

3This claim is defended by many, including Sidgwick (1907, p. 414), Ramsey (1928, p. 541), Parfit (1984, p. 486),
and Cowen and Parfit (1992).
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prospect that has some small probability of improving far future lives. The riskier, future-benefiting

prospect will be the better of the two, so long as the number of future lives improved is large enough.

So say Impartiality, Aggregation, and expected value theory in conjunction. Indeed, in practice, the

stakes and the probabilities in many practical decisions seem to be high enough that these claims

imply that, in fact, it is often better to do whatever will most improve the far future (see Greaves

and MacAskill, 2021, for discussion).

But these same three claims, in conjunction, also have troubling implications.

By some probability distributions over how great the total moral value of the future will be,

the expected total value of the future would be undefined. These distributions include well-known

troublemakers from decision theory: the Pasadena game (originating in Nover and Hájek, 2004) and

the Agnesi game (see Poisson, 1824; Alexander, 2012). But these problematic distributions aren’t

merely hypothetical. As I will argue below, we have compelling reasons to adopt similarly problematic

probability distributions over the total value that results from any practical choice.4

If we accept such a problematic probability distribution over the total value of the future, and we

accept Impartiality, Aggregation, and expected value theory (and no principle for comparing risky

options stronger than that), then we face a dire reductio. For every option ever available to us in

practice, we cannot evaluate it; we cannot compare it to any other such option; not even to options

identical to itself. We can never say how our options compare morally.

This implication seems absurd. But it is not immediately clear how we might avoid it in a plausible

manner, at least without abandoning Impartiality or Aggregation—without admitting that the time

at which a life is lived can matter morally, or admitting that the ranking of outcomes deviates from

that of their total values, either of which undermines the case for longtermism described above. Can

we hold onto both claims and extend our comparisons to lotteries without slipping into absurdity?

One way we might do so is by replacing expected value theory with an alternative theory which

exhibits sensitivity to risk (e.g., expected utility theory with a non-linear utility function, or a version

of risk-weighted expected utility theory). With the right profile of risk aversion and risk seeking, such

theories can effectively replace prospects like the Pasadena game with better-behaved ones. Given

this, we have a novel argument for risk sensitivity in the moral context: it seems we may need it to

compare moral lotteries at all, in practice. Depending on the nature of the risk sensitivity needed,

this argument may well also undermine longtermism.

In this paper, I seek to determine whether this is the only way out. If you find Impartiality,

Aggregation, and the risk neutrality of expected value theory convincing, is there some way to
4Note that the distributions I describe assign no probability to outcomes of infinite or undefined value. The problems

I describe arise even if we treat infinitely-valued outcomes as a conceptual impossibility. Likewise, they arise if we
recognise infinitely-valued outcomes but our decision procedure brackets them off and compares lotteries only by the
portion of their distributions over finitely-valued outcomes (as is proposed by Bostrom, 2011, pp. 37-8).
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salvage them? If not, we have a compelling argument against the conjunction of those principles,

and a compelling objection to the above justification of longtermism.

Most promising is to extend expected value theory to compare troublesome lotteries. The lit-

erature already features various proposals for how to do so (e.g., Colyvan, 2008; Easwaran, 2008;

Easwaran, 2014a; Meacham, 2019). But, as it turns out, no existing proposals succeed in making

comparisons between the prospects that I argue we face in practice. Despite this, I propose a new

theory, stronger than those already on offer, that resolves the problem. With this theory, we can

avoid the reductio that expected value theory, Impartiality, and Aggregation brought upon us, and

we can do so without endorsing risk sensitivity and without undermining the above argument for

longtermism. Indeed, as I will show in Section 5, this new proposal provides justification for an even

stronger form of longtermism.

2 Why might the expected value of the future be undefined?

Decision theorists have long recognised prospects that lack well-defined, finite expected values. Some

prospects lack such expected values because they feature outcomes with infinite value, such as in

Pascal’s Wager. But I will set aside such prospects in this paper, and assume that the future of

humanity must have only finite value.5

But even if we exclude infinitely valuable outcomes, some prospects still lack well-defined expected

values. One frequently discussed such prospect is that of the Pasadena game.6

Pasadena game: (An outcome with) value 2 with probability 1/2;

value −2 with probability 1/4;

value 8/3 with probability 1/8;

...

value 2n

n (−1)n−1 with probability 1/2n (for each positive integer n).

What is the game’s expected value? If we try to calculate it in the order the outcomes are listed,

we obtain the series 1− 1/2+ 1/3− 1/4+ ...+ (−1)n−1

n + .... This series, also known as the alternating

harmonic series, fails to be absolutely convergent. If we were to naively add it up in one order
5My reasons for setting aside such prospects are threefold. The first: it is independently interesting if we can

solve the problems raised by prospects over finitely-valued outcomes alone. The second: you might in fact think that
outcomes of infinite value are metaphysically or logically impossible, and so assign them probability zero in practice
(cf. Al-Kind̄i, 1974; Craig, 1979). The third: the problems of infinitely-valued outcomes seem solvable, but in a way
that leaves intact the problems of the Pasadena game and its kin (see Wilkinson, 2021; Tarsney and Wilkinson, n.d.).

6This game is typically presented with payoffs in terms of dollars or (decision-theoretic) utility, in amounts matching
those below (e.g., Nover and Hájek, 2004; Easwaran, 2014a; Bartha, 2016). Such versions of the game pose problems
for expected dollar maximisers and expected utility maximisers. Here, the game is presented in terms of moral value
and will pose structurally identical problems for expected value maximisers.
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or another, we could obtain any total we wanted, so long as we picked the right order.7 So, we

cannot say that the game has any particular expected value at all (see Nover and Hájek, 2004)—in

this sense, the Pasadena game defies expectations (or is expectation-defying). And so expected value

theory cannot tell us how it compares to any outcome, to any other prospect, nor even to itself. If

lotteries are to be compared by expected value theory alone, then the Pasadena game will be no

better than, no worse than, nor equally good as any other prospect we might consider.

A similar prospect is the Agnesi game. Unlike the Pasadena game, it gives a continuous (rather

than discrete) probability distribution over possible values. It can result in an outcome of any real

value v; its probability density over value is given by the following function, also known as the Witch

of Agnesi or (an example of) a Cauchy distribution.8

p(v) =
1

π(1 + v2)

The resulting probability distribution looks like this:

;

v

p(v)

Figure 1: Probability density function p(v) for the Agnesi game

Try to take the expected value of this prospect and you will find that it has none (Poisson, 1824).

For continuous distributions like this, the expected value is given by the integral of v × p(v) from

negative infinity to positive infinity (analogous to an expected sum: v×P (v) over all possible values

v). But, for the Agnesi game, that integral between 0 and positive infinity is positively infinite!

And, from 0 to negative infinity, it is negatively infinite! Sum these integrals together—equivalently,

take the integral over all possible values of v—and the total is undefined. Much like the Pasadena
7Since the series is conditionally convergent, this result follows from the Riemann series theorem.
8This curve was first described in print by de Fermat (c. 1659) and first analysed as a probability distribution by

Poisson (1824). For a discussion of this distribution in the context of decision theory, see Alexander (2012).
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game’s expected sum, the Agnesi game’s expected integral fails to converge absolutely. It, too, defies

expecations. So, expected value theory will fail to compare it to any outcome, to any other prospect,

nor even to itself.

You might think that neither of these prospects are realistic—that they are merely contrived,

hypothetical options that we are sure never to encounter beyond the pages of a philosophy journal.

As Hájek (2014, p. 565) says of the Pasadena game, you might think that considering either prospect

is “...a highly idealised thought experiment about a physically impossible game."9 If so, you might

not be troubled by the silence of expected value theory above. You might think that we should

simply ignore them, and that expected value theory will still suffice for real-world decision-making.

Unfortunately, there is reason to think that we do face such prospects in practice. When we

are evaluating our options morally, if we consider the prospects for humanity’s long-run future and

we maintain Impartiality and Aggregation, then we have reason to think that every option ever

available to us defies expectations. In the remainder of this section, I give two discrete arguments

that humanity’s future prospects10, the second more troubling than the first, each of which delivers

us a nasty expectation-defying prospect over the total moral value of the future.

But, first, a brief note on probabilities. I assume that, for the purpose of moral comparisons, the

relevant notion of the probability of an outcome must be one of two notions. The first is its evidential

probability: how probable that outcome is to result from a given option, on the present evidence

of the agent deciding between that option and others (see Williamson, 2000, p. 209). The second

possible notion is the outcome’s subjective probability: how confident the decision-making agent is

that that outcome will result from a given option. If evidential probabilities are the morally relevant

ones, and if our evidence prescribes expectation-defying prospects, then we will face difficulties. Or, if

subjective probabilities are the relevant ones, and if we form our beliefs rationally given our evidence,

we will still face difficulties.

2.1 A possibility of Pasadena

A simple argument that our prospects for the total value of humanity’s future defy expectations goes

like this.

It seems possible that a Pasadena game will be played at some point at some time in the future.
9Along similar lines, Jeffrey (1983, p. 154) says of the related St Petersburg game that “...anyone who offers to let

the agent play [it] is a liar, for he is pretending to have an indefinitely large bank."
10I focus on the prospects of humanity’s future rather than of the world as a whole, for three reasons. The first is

simplicity. The second is that there are moral views on which the proper objects of comparison are not worlds as a
whole but instead consequences—the portion of the world that it is (nomologically) possible to influence in a given
decision (see, e.g., Bostrom, 2011, §3.2). And the third is that, if humanity’s future prospects have undefined expected
value, then so too will the prospects of the world as a whole (unless the value of events inside and outside our causal
future are strongly anti-correlated, which seems implausible). So, it suffices to focus on the value of humanity’s future.
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Although perhaps physically unrealistic, we can at least conceive of some future agent being subjected

to such a game—perhaps run by some mechanism of objective chance—and losing or gaining value in

their own life with probabilities as listed above. It would be no (logical or metaphysical) impossibility

for this to occur. And, given how little we know about the far future, you might think it overconfident

to assign probability zero to any agent ever being subjected to such a game. So, the evidential

probability of a Pasadena game someday being played, it seems, must be greater than zero.11

And, as has often been discussed before, any prospect with real, non-zero probability p of the

Pasadena game, no matter what other prospects it is mixed with, inherits the problems of the game

itself—like the game itself, having any such probability p of the Pasadena game brings undefined

expected value (Hájek and Smithson, 2012: pp. 39-42; Bartha, 2016: pp. 802-3). So, as long as

we have some probability p of such a Pasadena game over moral value being run somewhere in the

future, the overall prospect for the total value of the future will be undefined.

But is there such a probability of the Pasadena game someday being played? I do not think

the answer is clearly yes. One reason for doubt is that the correct theory of epistemic rationality

may be knowledge-based : it may include as evidence everything the agent knows, and so require

that evidential probabilities be assigned only after conditionalising on the agent’s knowledge (see

Williamson, 2000, §10.3).12 And you might think that we know that no one will ever be subjected

to the Pasadena game. Why? Perhaps you know that it would violate some physical law—it seems

plausible that an objective chance mechanism that can produce arbitrarily large amounts of moral

value would be physically impossible. Or perhaps you note that there are infinitely many different

possible games that future people might face in their lives, but at most finitely many that anyone

actually faces—from this, perhaps you can know that the Pasadena game won’t be among them. Or

perhaps you simply think it so implausible or subjectively improbable that the Pasadena game is

ever played that you conclude that you know it will not be. Whatever the reason, you might then

conditionalise on this knowledge and assign the game evidential probability zero.

Another reason to doubt that the evidential probability of the Pasadena game is non-zero is this.

It’s one thing to think that any possible outcome should be assigned non-zero probability. But it’s

quite another to think that any possible probability distribution over outcomes should be assigned

non-zero probability. It may be too overconfident to assign probability zero to the future having

value v or greater, for any v.13 But it would be a strictly stronger, and so less plausible, claim to say

the same of assigning probability zero to the future having any possible probability distribution over
11This line of thinking might be captured in the much-discussed principle of Regularity : that only logically (or

perhaps metaphysically, or doxastically) impossible propositions have evidential probability zero (see Edwards et al.,
1963; Easwaran, 2014b). But this principle is controversial (see, for instance, Pruss, 2013).

12To similar effect, you might instead think that the correct decision theory is knowledge-based: that, when com-
paring prospects, we can evaluate each prospect once we conditionalise on our knowledge (see Liu, n.d.).

13This claim could be treated as a weakened form of Regularity (see Footnote 11), such as: that, only for a logically
(or perhaps metaphysically, or doxastically) impossible outcome O can the proposition “Outcome O occurs." have an
evidential probability of zero.
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values v and above. Perhaps doing the latter would not be too overconfident. Or at least, given the

dire implications if you do so, perhaps epistemic rationality should not require that you entertain

every such possible probability distribution (even if it does require you to entertain every possible

outcome).

For either of these reasons, or perhaps others, you might be unconvinced of this argument for us

facing expectation-defying moral prospects in practice. To show that expected value theory is not

up to the task of comparing our moral prospects, it would help to have a more compelling argument

that we do face such prospects.

2.2 One model of the future

Here is a more compelling argument that we face expectation-defying prospects in practice.

Consider some future time T , beyond which we have no informative empirical evidence about

what will occur when. By this I mean the earliest T such that all of our specific predictions of events

after T are merely the uniform continuation of continuous physical trends from before T—that, if

we condition on any given events at any later time T ′, then our probability distribution over what

happens after T ′ would be the same as our probability distribution over what happens after T would

be if those same given events had occurred then. In effect, T is a time after all of our particular

predictions for humanity’s future are exhausted. Perhaps T is a billion years in the future; perhaps

just 1,000 years in the future.14

However late T is, it is possible that humanity survives until then (or at least that some form

of morally valuable life in our causal future survives until then). Regardless of how pessimistic you

are about humanity’s prospects, it seems wildly overconfident to assign probability zero to us not

making it until T , or to say that we know that we will not survive until then. (Indeed, it seems

far more overconfident than assigning probability zero to the Pasadena game someday being played,

or claiming knowledge that it won’t be.) Then, conditional on us surviving until T , what of the

prospects for life beyond that, as time stretches out indefinitely? What is the conditional probability

of a further value v arising? Since we have no empirical evidence about events beyond T , by definition,

the answer is not so clear.

Here is one way we might model value after T which, I suggest, we do not know is incorrect: as

the sum of value at discrete, isolated, and reproducing clusters of human civilisation. At present,

humanity is clustered together at one location, on a single planet. If we were to stay in this situation, it
14Perhaps T lies after the so-called heat death of the universe. But note that even that predicted heat death is a

continuation of a long-running trend of cosmological expansion—of the universe increasing in entropy which, beyond
some point, it qualifies as having undergone heat death. Still, the universe will never quite reach a state of perfect
entropy, so there is no genuine categorical difference between before heat death and after it (Dyson et al., 2002).
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would be appropriate to assign a constant probability (or at least a minimum, non-zero probability) to

us going extinct each year. But, more realistically, human civilisation might not remain so clustered;

perhaps we might spread throughout space into many such clusters. As we spread further and further,

some such clusters will be more and more isolated from others. For instance, if we imagine humanity

spreading to different planet-like bodies throughout space, the maximum spatial distance between

one planet and its most distant counterparts will become greater and greater. Each such planet

thereby becomes more and more isolated from its most distant counterparts—its inhabitants become

better and better protected from calamities that arise on the most distant planets. Indeed, given

enough time, it plausibly becomes physically impossible for events within one such cluster of planets

to affect other discrete clusters.15 Complete isolation like this may also be achieved in other ways,

such as by us perhaps even creating and inhabiting ‘baby universes’.16 But however our descendants

might isolate themselves from one another, doing so makes human extinction far less likely. The

extinction of humanity as a whole would then require great calamities to happen independently in

each of many isolated clusters of civilisation—far less likely than any individual calamity.17 The more

clusters, the lower the probability of overall extinction at any given time.

Absent such calamities, in this model of the future, the number of clusters increases over time. We

can assume that each existing isolated cluster has the same (independent) probability of ‘reproducing’

and creating a new cluster. I will also assume, as seems possible, that the probability of a cluster

reproducing in a given time period is at least as great as its probability of dying off.

And the more clusters, the more moral value there is. We can assume—again conservatively, as

it ignores growth within each cluster—that the total value of human civilisation in a given year is

roughly proportional to the number of such clusters that then exist. The total (absolute) value after

T then, again assuming Impartiality and Aggregation, will be roughly proportional to the sum of the

lifetime of every such cluster to ever exist. But that total value may be positive or negative—there is

some risk that the future of human civilisation may be one of immense misery. Or, at least, we should

be uncertain about the relation between total number of cluster-years and total value—uncertain of

the average value of a year of such a cluster existing. For simplicity, I will assume that there is

a simple distribution over what this average value will be: probability 0.5 that it is some value v

and probability 0.5 that it is −v; and this is (roughly) independent of our uncertainty of how many
15In the case of humanity being spread over planets further and further away from one another, this is made possible

by cosmological expansion. With continued expansion, even star systems currently close to one another will eventually
have non-overlapping causal futures (see Ord, n.d.).

16The possibility of doing so is somewhat supported by the prominent inflationary view of cosmology, under which
our own universe was created by a quantum tunnelling event (see Vilenkin, 1983). It is far from settled whether
inflationary cosmology would indeed allow this but, on our current understanding, it is certainly a live possibility
(Farhi et al., 1990). And, independently, there is theoretical support for it being possible to create new universes
via the formation of black holes, and that universes created in this way may be only temporarily accessible to their
creators (Brandenberger et al., 2021; Frolov et al., 1990). Again, the science is far from settled but, based on our
current evidence, it is a live possibility. (For an accessible survey of this topic, see Merali, 2017)

17Cf. Sandberg and Armstrong (2012).
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clusters there are. (This distribution is unrealistic, but will be made more realistic below.)

If we combine these assumptions, the arrangement of clusters humanity’s future forms a stochastic

process known as a birth-and-death process (or, more specifically, a Kendall process—see Kendall,

1948). Individual clusters reproduce and die off independently, much like members of a population.

And what we care about is the total number of cluster-years that are ever lived (but, by assumption,

it is equiprobable that the average cluster-year is positive or negative in value). This gives us a

prospect for value after T that I will call the Aquila game18, given by the equation and plot below.19

p(v) =
a

|v|
√
|v|

for some constant a > 0

v

p(v)

Figure 2: The probability density function over value for the Aquila game

Just like Pasadena and Agnesi, attempt to take the Aquila game’s expected value and you will

find that it defies expectations. Like the Agnesi game above, the probability density in its tails—as v

approaches ±∞—approaches 0 sufficiently slowly that the expected value integral is undefined. And

the same goes for the prospect for the total value of the world overall, both before and after T : like

Pasadena, we can mix the Aquila game with any other prospect and the overall prospect will have
18Given its connection to the St Petersburg game and its cosmic motivation, the game takes its name from the

location of the Petra system in our night sky: the Aquila constellation.
19The proof that this is the correct probability distribution for the above model is a laborious one, so I omit it here.

But, by the same methods as used in Athreya (2008) (and with an application of Pollett’s, 2003 Proposition 3), it can
be shown that any Kessel process with death and birth rates of µ and λ respectively will have the following probability
distribution over total population (equivalent to total cluster-years here).

p(v) =

√
µ

λ

I1(2x
√
µλ)

xex(µ+λ)
(where I1(z) is the first-order modified Bessel function of the first kind)

When v is large (which is what matters most for determining whether it has a defined expectation), we can use the
asymptotic expansion I1(z) ≈ ez√

2πz

(
1− 3

8z
− 15

128z2
− ...

)
(from Abramowitz and Stegun, 1970, p. 377) to approximate

the equation for p(v). If µ = λ then we can simplify to give an approximate probability distribution of p(v) =
4
√

µ
λ3

1

2
√
π|v|

√
|v|

= a

|v|
√

|v|
, matching that in the main text above. If instead µ < λ, then we obtain a more complicated

equation, but one which still has the crucial property of giving an undefined expected value. (I am grateful to Alex
Barry for assistance with these details.)
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tails of the same shape; the overall prospect will defy expectations too.20 Similarly, we can add the

payoff of Aquila to any prospect over events before T (at least, any prospect that is not perfectly

anti-correlated with the Aquila game) and the prospect over the overall payoff will defy expectations.

So, if the Aquila game is at least one minimally probable prospect for what happens after T , then

expected value theory will fail to compare every pair of options we might ever come across in practice.

And, again, that failure extends to the comparisons needed to justify longtermism.

But is the Aquila game (or some mixture of it and other prospects) the correct prospect for the

value of humanity beyond time T? If there is any non-zero probability that it is, that is enough

for my purposes—the overall prospect will then inherit its expectation-defying property. And it

does seem an at least minimally plausible story, such that I suggest we should assign it a non-zero

probability—indeed, a fairly high probability. But you might be sceptical. Here are three reasons

why, and why I do not think they undermine Aquila as a plausible model of our future prospects.

The first reason for scepticism: perhaps the number of clusters of, and value of, human civilisation

could not continue growing forever. Perhaps eternal exponential growth of this sort, whether it

is achieved by spreading outwards in an ever-expanding cosmos or by creating baby universes, is

physically impossible. This may well be true! But we do not know that it is. It seems rational

to assign at least some non-zero probability to at least linear (or logarithmic) growth, on average.

And if we assign any non-zero probability to this, and so to the above model being correct, then our

prospect over the value of the future will still defy expectations.

The second reason why the Aquila game may be unrealistic: you might think that some possible

extinction scenarios would strike every cluster of civilisation at once—perhaps some exotic physical

phenomenon could simultaneously remove the conditions necessary for morally valuable life every-

where. If so, the annual probability of extinction of each cluster would not be entirely independent

of the others. And, given this, the annual probability of humanity’s overall extinction would not

be brought arbitrarily close to 0 by simply adding more and more clusters. But still this does not

prevent the prospect of humanity’s overall future value from resembling the Aquila game. Even if

there is some annual probability of civilisation-wide extinction, whether we avoid extinction in one

year (conditional on having survived until the previous year) is not independent of whether we avoid

it in every other year (conditional on having survived until the year before). In some states of the

world, phenomena that extinguish all of humanity at once are physically possible; in some states of

the world they are not, and having arbitrarily many isolated clusters of humanity does provide arbi-

trarily much protection from extinction. We should assign at least some non-zero probability to such

extinction-causing phenomena being physically impossible. And so we can treat the overall prospect

of humanity’s future value as a mixture of the prospect in which such phenomena are physically pos-
20As above, I assume that events within and beyond our causal future are not strongly anti-correlated (see Footnote

10).
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sible and the prospect in which they are not not possible—in effect, a gamble between some prospect

and the Aquila game. And so the overall prospect we obtain will still have tails resembling the Aquila

game, since it offers some non-zero probability of playing that game. And, since the Aquila game

defies expectations, then the overall prospect will too. So it suffices to analyse the Aquila game in

place of the more complicated overall prospect.

The third reason: it seems implausible that the average human life is just as likely to be negative

in value as it is to be positive (and of equal absolute value, on whichever interval scale we use to

represent value). It seems to me at least that any future civilisation will more likely aim to make its

descendants happy than aim to make them miserable (or, more generally, to have valuable experiences

rather than disvaluable ones), and that its probability of success in this goal is better than chance.

This probability of success seems far better than chance once we recognise that humanity in the far

future will likely have access to far more advanced technologies and greater resources than we do. Or

perhaps you are pessimistic about humanity’s future technological level, its available resources, or its

inclination to benefit posterity—you might well think the prospect for the average human life skews

towards misery rather than happiness. Either way, my earlier assumption that the average human

life has probability 0.5 of having value some k > 0 and probability 0.5 of −k seems clearly false.

Rather, one of these possibilities will have higher probability than the other, and so the distribution

will skew one way or the other.21

Given this skew, the true distribution over the value of the future of humanity will not be symmet-

ric like the Aquila game. It will be skewed in either the positive or negative direction, as illustrated

below. This more general Skewed Aquila Game has a probability distribution given by the following

equation (for some positive a1 ̸= a2, representing the relative probability of total value being positive

or negative).

p(v) =


a1

|v|(
√

|v|
for v > 0

a2
|v|(

√
|v|

for v < 0


21The distribution will likely also be far more spread out than this, but I will put that complication aside, as it will

simply result in an overall distribution with tails that approach 0 even more slowly than the Aquila game. The same
problems as below will arise and the same solutions will hold.
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Figure 3: The probability density function over value for the Skewed Aquila game

For simplicity, in much of what follows, I will focus on the more basic Aquila game. The problems

I will describe that arise for comparing the Aquila game to alternatives will arise with equal force if

we substitute in the Skewed Aquila Game. Later, when I present a solution to these problems, the

differences between the two games will become more important.

2.3 Challenges for decision-making

If you model the value of the far future of humanity as the Aquila game, as the Skewed Aquila game,

or as involving any non-zero probability of the Pasadena game or similar, then you face a serious

challenge. You cannot assign an expected moral value to any of the prospects ever available to you

in practice. So, if expected value theory is the correct theory of moral betterness under risk, then no

option ever available to you will be morally better or worse than any other. But this is absurd.

To plausibly compare any of our available future prospects, we must replace expected value theory

with some alternative. In later sections, I will discuss such alternative theories. But, first, what do

we want them to achieve? If they can go further than expected value theory, just how far do they

need to go to be sufficient for practical use?

I propose four problem cases that those theories must be able to deal with to be adequate. (And

that, ideally, the theories should deal with in the intuitively correct way.) Some of these cases will

trouble even theories that deal neatly with the original Pasadena and Agnesi games. Nonetheless, to

make moral decisions in practice where we face games like Aquila (or Skewed Aquila) our theories

must be able to deal with these cases.

The first problem case, No Change, is the decision scenario an agent faces when their available

actions all produce exactly the same future prospect. For instance, an agent may choose between

eating Sugar Puffs for breakfast and eating Frosties, but they have no evidence for either option

being more or less likely to influence the future in any particular way. (Agents with great foresight
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may have access to evidence supporting some story of why one cereal is more likely to produce better

long-run outcomes, but suppose that the agent here lacks any such evidence.) For our purposes, the

options available to her are equivalent to those below. (Note that we could replace the Aquila game

here and below with Skewed Aquila, but expected value theory will say the same about it, so for

simplicity I will focus on Aquila.)

Scenario 1: No Change

Sugar Puffs: The Aquila game.

Frosties: The Aquila game (with the same a).

Note that both options have identical probability distributions over value. But, still, bare expected

value theory cannot say how they compare—neither option has well-defined expected value, so that

value cannot be equal to itself. And this is all the more troubling when, intuitively, the correct

ranking of options seems clear: Sugar Puffs and Frosties are equally good. It would be desirable for

our theory to say this, that the Aquila game with such and such parameters is equally as good as

any other with the same parameters.

The second problem case, Improving the Present, is that which an agent faces when they can

improve some aspect of the world with certainty22, without otherwise changing the prospect. For

instance, an agent may choose whether to save the life of a child in the present day. And, regardless

of whether they do or not, their evidence may entail an identical probability distribution over what

happens beyond the immediate future. If so then, for our purposes, their options are equivalent to

the following.

Scenario 2: Improving the Present

Do Nothing: The Aquila game.

Save a Life: The Aquila game (with the same a) with value v′ > 0 added to every outcome.

Here, both options are identical except that the latter has its probability distribution shifted by

some bonus value v′.23 But, again, expected value theory cannot compare them. And, again, this is

all the more troubling given that the intuitively correct ranking is clear: that, as long as b is positive,

Save a Life is better than Do Nothing. Improving every outcome should also improve the option

overall (so long as the outcomes’ probabilities are otherwise held fixed).
22If that improvement is less-than-certain, we have a slightly different scenario. Fortunately, each of the proposed

theories below that give the correct verdict in Improving the Present happen to give the same verdict in this different
scenario, so I will not dwell on that scenario here.

23Astute readers may recognise this case as an analogue of the widely discussed comparison of the Pasadena game
to the Altadena game (introduced by Nover and Hájek, 2004, p. 241). The latter is a variant of the Pasadena game
where every outcome is sweetened by $1.

13



The third problem case, Reducing Extinction Risk, is that which an agent faces when they can

affect humanity’s probability of surviving in the near term. If the agent does nothing, humanity will

have some probability of surviving to T and beyond. And if they intervene, humanity will have a

greater probability of doing so. Both options can be represented by some mixture of a low-value

outcome (which, for simplicity, we can set to value 0) and the prospect obtained conditional on

surviving the near term. For our purposes, those options are equivalent to the following.

Scenario 3: Reducing Extinction Risk

Intervene: A mixture of the Aquila game with probability p and an outcome of value 0

with probability 1− p.

Do Nothing: A mixture of the Aquila game (with the same a) with probability q < p and

an outcome of value 0 with probability 1− q.

Here, both options are equivalent to having some probability of playing the Aquila game (with

such and such parameters), with Intervene giving the higher probability. But, again, expected value

theory cannot compare the two, let alone say that it is better to Intervene. Again, this is troubling

since it is a case we plausibly may face. Also troubling is that, a fortiori, expected value theory

cannot deliver the intuitively correct verdict: that Intervene is at least as good as Do Nothing if

and only if it is at least as good for humanity to survive as it is to go extinct. (That is, if the

corresponding Aquila game is at least as good as an outcome of value 0.)

The fourth and most challenging problem case, Changing the Future, covers what cases remain.

This is the case an agent faces when they can affect humanity’s long-run prospects in some manner

that is persistent and more complicated than improving the present or making survival more or

less likely. An example of this sort of case (and not the previous three) might be when a political

activist decides whether to campaign for a change to political institutions that foreseeably improves

decision-making. Doing so may make it more likely that humanity at large has better political

institutions indefinitely far into the future, perhaps increasing the probability that lives or clusters

of civilisation have positive value on average, and/or perhaps decreasing the risk of unwise collective

decision-making and thereby decreasing the long-term annual probability δ that each cluster of human

civilisation goes extinct. However the activist decides, the resulting prospect will, for our purposes,

be equivalent to some mixture of some form of the Aquila game. But the two options may involve

quite different versions of the Aquila game.

Scenario 4: Changing the Future

Change: Some mixture of the Aquila game with probability p and an outcome of value 0

with probability 1− p.
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Don’t Change: Some mixture of the Aquila game (with different a—as a result of different

rates of growth and/or extinction) with probability q and an outcome of value 0 with

probability 1− q.

Again, expected value theory alone cannot compare the two. And this is troubling because,

plausibly, we will sometimes face such a decision in practice. And we need guidance—ideally, guidance

that says that at least some options are better than others. But, again, expected value theory alone

cannot provide any such guidance.

3 An argument for risk sensitivity?

Above, we saw that the prospect for how much value humanity produces in future defies expectations.

This holds even if we assign only a tiny probability to humanity surviving until some indefinitely

distant time T , to human civilisation continuing to grow, and to isolated clusters of humanity facing

no common threats. A tiny probability of each of these results in a distribution akin to the Aquila

game.

Given this, expected value theory alone cannot be the correct theory of instrumental moral

betterness. If it were, no future prospect ever available to us would be better than (or even comparable

to) any other. And that would be absurd. So we must replace expected value theory with something

else. In its stead, we can either adopt a theory that merely extends the verdicts of expected value

theory (as I consider in the next section), or adopt a theory that conflicts with expected value theory

even where it already gives verdicts. Here, I will consider the second sort of replacement.

One such alternative theory is expected utility theory (specifically, a risk-sensitive version). It

works much like expected value theory does. Where expected value theory says that the best prospects

are those with the highest expected moral value, expected utility theory says that the best prospects

are those with the highest expected utility.

What is utility? For my purposes, it is some representation of the betterness ranking over out-

comes. But it need not be the same representation as the moral value function. Utility here is not the

same thing as what moral theorists sometimes call utility—a cardinal measure of total welfare—but

instead a purely decision-theoretic construct.24 As von Neumann and Morgenstern (1953, p. 28) put

it, utility is simply “...that thing for which the calculus of mathematical expectations is legitimate.”

For instance, consider three outcomes A, B, and C that have moral values 0, 1, and 2, respectively.

According to at least one possible utility function, those same outcomes have utilities 0, 99, and 100,

respectively. And consider a coin flip between A and C: it will have expected value 1, equal to the
24See Zhao (2021, pp. 11-2) for discussion.
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value of B; but it will have expected utility 50, much lower than 99, the utility of B. So expected

utility theory is compatible with the risk-averse verdict that getting moral value 1 for sure is better

than a coin-flip between 0 and 2. So too, it is compatible with the risk-inclined verdict that the

coin-flip is better, if we adopt a different utility function.

In general, the utility of an outcome may be any real-valued function of its moral value (at least

when determining instrumental moral betterness), risk-sensitive or not, so long as that function is

strictly increasing. In particular, the correct utility function for use in comparing prospects morally

might sometimes be concave: the higher the value of outcomes, the less their utility increases for each

additional unit of value that is added to them. This tends to lead to risk-averse preferences. And/or

the utility function may sometimes be convex : the higher the value of the outcomes, the more their

utility increases for each additional unit of value. This tends to lead to risk-inclined preferences. One

possible function, u(v), that is sometimes concave and sometimes convex is plotted below.

;;

v

u(v)

Figure 4: A utility function that is concave for v > 0 and convex for v < 0

But how does switching from expected value theory to a risk-sensitive version of expected utility

theory, with a non-linear utility function, affect our comparisons of expectation-defying prospects?

To see how, note that such prospects posed a problem for expected value theory only because the

probability densities of outcomes didn’t approach zero quickly enough as value approaches positive

and negative infinity. If those extreme outcomes just had lower (perhaps much lower) absolute

values, the prospects would no longer defy expectations, and expected value theory could evaluate

them. But, in effect, they do have lower absolute ‘values’ if we switch to expected utility theory with

a utility function like that plotted above—we lower the contribution that those extreme outcomes

make to the expected utility calculation. Then, for the purpose of calculating expected utility, an

expectation-defying prospect no longer defies expectations!

Take, for example, the Aquila game. Its troublesome distribution was given by p(v) = a
|v|

√
v

(for
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some a > 0). With a utility function that is concave enough for large positive values and convex

enough for large negative values25, we can turn that expectation-defying distribution over value into

a much tamer distribution over utility, such as that given by p(u) = 4a
u3 (which gives an expected

utility of 0).

This works in all four of the problem cases described above. In the first (No Change), where we

must compare the Aquila game to an identical prospect, a utility function as above lets us say that the

two prospects are equally good—not only can expected utility theory say something here, but it says

the intuitively correct thing. In the second case (Improving the Present), where we must compare

the Aquila game to an otherwise-identical prospect with positive value b added to each outcome, a

utility function as above lets us say that the prospect sweetened by b is better. In the third (Reducing

Extinction Risk), where we compare two mixtures of the Aquila game, it again provides a comparison

(although what it says will depend on the exact utility function). And, in the fourth (Changing the

Future), again, it can compare any (mixture of) one Aquila game to another.

We can do the same with any pair of expectation-defying prospects; we need only adopt a utility

function that is concave (convex) enough for large positive (negative) values. We need only accept

a certain sensitivity to risk and the problem is solved. Thus, expected utility theory can deliver

verdicts in those scenarios where expected value theory was lacking.26

What should we make of the success of expected utility theory (with the right utility function)

where expected value theory failed, and in the absence of any conservative extension of expected

value theory? We might take the above as a surprising argument in favour of risk sensitivity—in

favour of risk aversion for large positive values and in favour of risk inclination for large negative

values.

If we accept expected utility theory then, to be able to ever compare our moral options in practice,

we must adopt a utility function like that above. Otherwise, we cannot compare the Aquila, Pasadena,

or any other expectation-defying game to any other, and so we cannot compare morally any options

we ever face. And we have at least some reason to accept a form of expected utility theory—it is

implied by the conjunction of several appealing axioms, as shown in various celebrated representation

theorems. (Note that expected value theory would be compatible with these axioms too, at least if

25For instance, setting u(v) = 4
√

|v| gives us the following result.
26A similar result could be achieved with a modified version of risk-weighted expected utility (REU) theory (even with

utility linear with respect to moral value). That theory says that a prospect Oa should be evaluated by REU(L) =
u0 +

∑n
j=1(uj − uj−1) · r

(
P (L ≥ uj)

)
, where the utilities of possible outcomes are given in ascending order by

{u0, u1, ..., un} and r : [0, 1] → [0, 1] is some non-decreasing function describing a particular risk attitude. When applied
to lotteries with continuous distributions and over outcomes with unbounded values, we might adjust the theory in two
ways: 1) replace with the discrete sum with an integral; and 2) take separately the REU of the conditional lotteries i)
Oa, conditional on u ≥ 0, and ii) Oa, conditional on u < 0, with the latter calculated ‘in reverse’, using the equation
REU(L|u < 0) = un −

∑n
j=1(uj − uj−1) · r∗

(
P (L < uj−1)

)
(and a suitable r∗ function). Doing so has an effect similar

to that under expected utility of adopting the utility function illustrated above. But proponents of REU theory would
likely baulk at this modification of their theory—particularly (2)—which may seem ad hoc, arbitrary, and poorly
motivated.
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weren’t for expectation-defying prospects, as it is equivalent to expected utility theory with a linear

utility function.) If we accept these axioms, and we require that our theory provides comparisons in

practice, we have no choice but to accept expected utility theory with a utility function of the sort

depicted above.

And that means accepting a certain level of risk aversion and risk seeking for large positive and

negative values, respectively. This will affect everyday decision-making—in at least some circum-

stances, it will require agents to no longer be indifferent between, say, one additional unit of value

for sure and a coin flip between two units and zero units of additional value.

But you might find this solution unsatisfying. One possible reason why is that the presence of

prospects like the Aquila game do not seem to be the right grounds on which to decide our attitude

to risk.27 It seems appropriate to set the correct attitude to risk based on our intuitions about simple

cases (as in Buchak, 2013, §2.3), and to reason from there to more complicated cases like those

involving the Aquila game. But, if we set our risk attitudes according to the expectation-defying

prospects we actually face, they will typically lack this independent justification.

Another, related, reason to find this solution unsatisfying is that it gives us only contingent

reasons to adopt a particular theory of instrumental betterness—it makes features of the correct

theory depend on descriptive features of the world. Were the world different, and the prospects we

face less troublesome, we would have no need for a non-linear utility function and the risk-sensitivity

it brings.

But perhaps the most compelling reason to reject this solution is that, in the moral setting, risk

neutrality has powerful arguments in its favour. These arguments include Harsanyi’s classic social

aggregation theorem (Harsanyi, 1955) and many others (e.g., Tarsney, n.d.; Zhao, 2021; Beckstead and

Thomas, n.d.; Thomas, n.d.; Wilkinson, 2022, n.d.). By such arguments, if we adopt an aggregative

theory of moral betterness but admit sensitivity to risk, we must violate one or another highly

plausible principles. Without going into detail here, I will note simply that the existence of such

defences of risk neutrality (and of such defenders) means that it is at least of interest whether we

can deal with expectation-defying prospects without embracing risk sensitivity.

4 Preserving risk neutrality

Is embracing risk sensitivity our only option for dealing with prospects like the Aquila game? Or, if

you find risk neutrality independently appealing, is there some way to preserve it?

In this section, I consider possible ways we might do so—ways we might extend expected value
27I am grateful to Johanna Thoma for suggesting this objection.
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theory to deal with expectation-defying prospects, without admitting risk sensitivity. I will first

survey existing proposals from the literature. Unfortunately, none of these proposals can adequately

deal with a prospect as troublesome as the Aquila game. But I will propose a novel extension that

can.

4.1 Relative Expectation Theory

The first such proposal is Relative Expectation Theory, first proposed by Colyvan (2008). Here, I

will focus on the strengthened version suggested by both Colyvan and Hájek (2016, pp. 837-8) and

Meacham (2019, pp. 13-7).

According to Relative Expectation Theory, we no longer attempt to assign some value to each

prospect separately and compare those values. Instead, for each pair of prospects, we evaluate

a relative expectation (RE): the expected difference in value between the two prospects; but, in

calculating this difference, we match up the outcomes of each prospect by how far along the prospect’s

probability distribution they are. For any prospects Oa and Ob, we match up the lowest value of the

possible outcomes of Oa to the lowest possible value for Ob; we match up the median values of each;

we match up the best possible values of each; and likewise for every other possible value, matching

each value from Oa with the value in Ob that is equally far along Ob’s distribution. Put differently,

we match each possible value in Oa to the value lying at the same quantile in Ob.

Formally, we identify the value that is fraction P of the way along the probability distribution of

O with the quantile function vO(P )—the function that, for each probability P , gives you the largest

value v such that O has probability P (or less) of resulting in value v or less. For instance, vO(0.5)

would be the median, and vO(0.9) would be the value that O has only a probability 0.1 of exceeding.

(Equivalently, vO(P ) is the inverse of O’s cumulative probability distribution; for an illustration, see

below.) With this function, Relative Expectation Theory can be stated as follows.

Relative Expectation Theory : A prospect Oa is at least as good as another prospect Ob if

RE(Oa, Ob) =

∫ 1

0

(
vOa(P )− vOb

(P )
)
dP ⩾ 0

Relative Expectation Theory agrees with all of the verdicts given by expected value theory.

But how does it fare in the cases described above? Recall, for instance, the case of No Change.

Where Oa and Ob are both the Aquila game with precisely the same distribution, both will have the

same quantile function vO (matching the function labelled “Aquila game" in the figure below). So

vOa(P )− vOb
(P ) will always be 0, the integral from 0 to 1 will be 0, and they will be equally good.

Or consider Improving the Present. The option Do Nothing is simply the Aquila game, while the
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option Save a Life is the same Aquila game but with every outcome sweetened by value b > 0. These

options will have quantile functions vO as plotted below—functions that are identical, except that

Save a Life’s function is shifted up by value b for all P . The difference between the functions for Save

a Life and Do Nothing is always positive, so the integral of vOa(P )− vOb
(P ) from 0 to 1 (matching

the area between the two graphs below) will be positive too, and Save a Life will be better. Not only

can Relative Expectation Theory∗ compare the two, but it gives the intuitively correct verdict.

;;

10
Aquila game

Aquila game+b

P

vO(P )

Figure 5: The quantile functions vO of the options in Improving the Present: the Aquila game (Do
Nothing); and the same Aquila game with each outcome improved by b > 0 (Save a Life)

But Relative Expectation Theory cannot say anything in the third and fourth scenarios (Re-

ducing Extinction Risk and Changing the Future). As has been noted before, it cannot compare

an expectation-defying prospect to a sure outcome of value 0 (Colyvan and Hájek, 2016; Meacham,

2019)—RE becomes the expected value of the expectation-defying prospect, which is undefined. The

same goes for the Aquila and Skewed Aquila games. Where previous authors have observed this

implication, they have accepted it—Pasadena and its kin are peculiar prospects, so it is not clear

how we should compare them to the status quo, nor how good they are. But it cannot be a proper

implication of decision theory that it falls silent in many practical (moral) decisions. And yet that

verdict means that it does—that it must fail in Reducing Extinction Risk and, a fortiori, in Changing

the Future. Whenever an agent faces a decision that affects the probability that humanity survives

rather than perishes, Relative Expectation Theory will fall silent. So, I suggest, it proves inadequate.
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4.2 Principal Value Theory

Another alternative that extends expected value theory comes from Easwaran (2014a) (which is

itself a strengthening of the earlier proposal of Easwaran, 2008). By this proposal, Principal Value

Theory, we consider truncated versions of each prospect Oa. For any positive n, let O
|v|⩽n
a be a

prospect that assigns the same probability to every possible value with absolute value up to n; the

remaining probability mass, taken from values below −n and above +n, is redistributed to value 0.

For any such n, that truncated prospect will have some defined expected value. And, if its expected

value approaches some finite limit as n approaches infinity, that limit (or principal value) seems an

appropriate value to assign Oa. Indeed, for all prospects that have well-defined expected values, their

principal values will be exactly the same.

Principal Value Theory : A prospect Oa is at least as good as another prospect Ob if

PV(Oa) ≥PV(Ob), where

PV(O) = lim
n→∞

E(O|v|⩽n)

and the principal values of both Oa and Ob are stable (more on this below).

Although principal values, given by PV(O), seem a plausible way to compare prospects, they

sometimes have an undesirable feature. For many prospects—what we can call unstable prospects—

principal values give inconsistent evaluations. Suppose we represent value on one interval scale,

and the truncated prospect O|v|⩽n redistributes the probability of extreme values to value 0. Then

principal value theory might say that the prospect O is better than a sure outcome of value 0. But,

if O is an unstable prospect, we can represent value on some different interval scale, the truncated

prospect O|v|⩽n will redistribute the probability of extreme values to a different ‘value 0’, and we

obtain a principal value for prospect O that is different. Compare it to that same sure outcome of

value 0 (which, on this new interval scale, will have some value b ̸= 0) and it may no longer be

greater. And this is implausible—whether one prospect is better than another cannot depend on

something so arbitrary as which interval scale we use to represent it. It must be consistent. This is

why Principal Value Theory must fall silent when either prospect is not stable: when their principal

values depend on the interval scale on which they are represented.28

But many expectation-defying prospects aren’t stable, including the Aquila game (and the Skewed

Aquila game). As a result, in practice, Principal Value Theory cannot evaluate any of the prospects

featured in the four cases above, nor can it compare any of those prospects to any other.
28As Easwaran (2014a) shows, this condition is equivalent to a prospect (O) satisfying, for some positive k:

lim
n→∞

(
(n− k)P

(
|O| > n− k

)
− (n+ k)P

(
|O| > n+ k

))
= 0
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But we might strengthen Principal Value Theory further. One proposal for doing so comes from

Meacham (2019, p. 1021), by which we, in effect, combine it with Relative Expectation Theory∗.

Instead of evaluating each prospect by its principal value and comparing those values, we might take

the principal value of the relative ‘difference’ between them. We can do so by, for any prospects Oa

and Ob, considering the relative prospect R(Oa, Ob). Roughly, this is the prospect over how much

Oa and Ob would end up differing in value, if we identified their states by probability. Less roughly,

this is the prospect for what value you obtain if you take the difference between vOa(P ) and vOb
(P ),

randomly selecting a probability P from (a uniform distribution from) 0 to 1.29 We can then take

the principal value of R(Oa, Ob) rather than each of Oa and Ob. If it is greater than 0, Oa is better

than Ob.

Principal Value Theory∗: A prospect Oa is at least as good as another prospect Ob if

PV
(
R(Oa, Ob)

)
= lim

n→∞
E(R(Oa, Ob)

|v|⩽n) ≥ 0

and R(Oa, Ob) is stable.

This version of Principal Value Theory lets us say more. For instance, in the first problem case

(No Change), it confirms that the Aquila game is equally as good as itself—for any prospect O,

R(O,O) gives a certainty of value 0. And in the second case (Improving the Present), it confirms

that improving every outcome by value b > 0 is a strict improvement—R(Oa, Ob) will give a certainty

of value b.

But it still does not let us say anything in the third case, Reducing Extinction Risk. Note that

the relative prospect R generated between some prospect Oa and a sure outcome of value 0 simply

is that original prospect Oa. So, since the Aquila game is unstable, the relative prospect between

it and that outcome of value 0 will be unstable too—Principal Value Theory∗ cannot compare the

Aquila game to the sure outcome (indeed, any sure outcome). This carries over to comparisons of

different mixtures of the Aquila game with a sure outcome of value 0—precisely the sorts of mixtures

that we must compare in Reducing Extinction Risk. So, even this strengthened version of Principal

Value Theory will fall silent in Reducing Extinction Risk. And, a fortiori, it will fall silent in the

fourth case, Changing the Future. So it will be inadequate for at least an important class of practical

moral cases.
29Formally, R(Oa, Ob)’s distribution is given by p(v) = p

(
vOa(P )− vOb(P ) = v | P ∝ U[0,1]

)
.
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4.3 Invariant Value Theory

But the silence of the above proposals does not mean that there isn’t any extension of expected value

theory that can sensibly compare the Aquila game to alternatives.

I propose an alternative method: Invariant Value Theory. Much like Easwaran’s Principal Value

Theory, it uses a Cauchy principal value of a prospect’s expectation, but a different one. Easwaran’s

proposal has us truncate prospects by the absolute values of their outcomes—that theory has us

consider O|v|⩽n, the prospect obtained from O by cutting off the tails of the distribution above n

and below −n (and that probability redistributed to value 0). It is little surprise that truncating

the prospect in this way sometimes results in evaluations that differ if we use a different scale, with

a different zero point, to represent value—after all, n and −n identify different values depending on

the scale. It would be much better if we could truncate in some way that is independent of the scale

used for value.

Invariant Value Theory involves such a truncation. Instead of cutting off O’s tails where they

exceed some absolute value n, we cut them off according to probability. We cut them off, for the

right tail, at the value for which there is probability ε of exceeding it and, for the left tail, at the

value for which there is probability ε of falling below it.30 In the terminology from earlier, we cut off

the distribution at values vO(ε) and vO(1− ε).

In addition to this change, this proposal does not redistribute all of the truncated probability mass

to value 0. Instead, it redistributes that probability to all of the remaining outcomes, in proportion

to their current probability density.

Like Principal Value Theory, this proposal then takes the expectation of the truncated version

of Oa, and evaluates Oa by the limit of this expectation (its invariant value) as the truncation

approaches the true prospect. But this limit is taken as ε approaches 0, not simply as the value n

approaches infinity. Put formally, the proposal can be expressed as follows.

Invariant Value Theory : A prospect Oa is at least as good as another prospect Ob if

IV(Oa) ≥ IV(Ob), where:

IV(O) = lim
ε→0+

∫ 1−ε

ε
vO(P )dP

And we can immediately strengthen the theory further, in line with Meacham’s (2019, p. 1021)

proposal described above. Instead of taking the limit of the expectation of each prospect as ε goes

to 0, we take the relative expectation between the two prospects (from earlier) as ε goes to 0. Or

equivalently, we simply take the invariant value of the relative prospect R(Oa, Ob) (also from earlier).
30Although our final proposals are very different, this method of truncation matches that used by Smith (2014).
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Invariant Value Theory∗: A prospect Oa is at least as good as another prospect Ob if

IV
(
R(Oa, Ob)

)
= lim

ε→0+

∫ 1−ε

ε
vOa(P )− vOb

(P )dP ≥ 0

To illustrate the theory at work, consider the options in Improving the Present: Do Nothing,

resulting in the Aquila game; and Save a Life, resulting in the same Aquila game but every outcome

is sweetened by value b > 0. Their quantile functions are plotted below. We consider the difference

between the two functions, as we did earlier. And we take the integral of that difference (given by

the shaded area below), but only between ε and 1 − ε. This will always be well-defined and finite.

Then we let ε approach 0—and so, symmetrically, let 1 − ε approach 1—and see what limit that

integral/area approaches. In this case, that limit is simply b, which tells us that the sweetened Aquila

game is better than the unsweetened one.

;;

1− ε

ε

10

Aquila game

Aquila game+b

P

vO(P )

Figure 6: The quantile functions vO of the options in Improving the Present: the Aquila game (Do
Nothing); and the same Aquila game with each outcome improved by b > 0 (Save a Life)

Unlike under Principal Value Theory, it does not matter on what interval scale we are representing

value, nor whether the prospects we compare are stable. Because are not truncating the prospects at

the (arbitrary) levels of value n and −n, nor are we redistributing the remaining probability density

to value 0. The truncation being used, and the limit as that truncation becomes closer to the true

prospects, is instead determined entirely by the probability distribution of the prospect. So, no

stability condition is needed!

How does Invariant Value Theory∗ fare in the problem cases from earlier? We have already seen

that it compares the options in the second case, Improving the Present, and delivers the intuitively

correct verdict. Likewise, it has no trouble with the first case, No Change—for any prospect O,
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including the Aquila game, the integral from the equation above is simply 0. So, the Aquila game

will be equally as good as itself.31 We can compare our options in No Change, again in the intuitively

correct way.

But can Invariant Value Theory∗ say what the previous proposal could not? Can it deal with

the remaining two problem cases? In the third problem case, Reducing Extinction Risk, we must

compare two different mixtures, call them Op and Oq, of the Aquila game and an outcome of value 0.

Op has probability p of resulting in the Aquila game, and Oq has a smaller probability q of resulting

in that same game. It can be shown that R(Op, Oq) will itself be a mixture of the Aquila game and

an outcome of value 0, with probability p − q of resulting in the Aquila game. Since the Aquila

game has a symmetric distribution, the invariant value of R(Op, Oq) will be its median value, 0 (see

Wilkinson, n.d.(a), §4) , the same as the Aquila game. So, the theory can compare Op and Oq, and

says that they are equally good. (The same won’t hold of the Skewed Aquila game, where human

survival is not equally likely to be better or worse than value 0; more on this below.)

What of the fourth case, Changing the Future? Again, we must compare different mixtures Op

and Oq of an Aquila game, but of Aquila games with a different value of a. We are no longer

comparing transformations of the same underlying prospect; we must now compare transformations

of entirely different Aquila games. But, again, Invariant Value Theory∗ can do so. Any such Aquila

game is symmetric about its median value, as is any mixture of it and an outcome of value 0. So,

as above, it can be shown that R(Op, Oq) will itself be some mixture of some Aquila game with an

outcome of value 0. This will have invariant value 0. Again, the theory can compare any two such

prospects—even in this most challenging of the problem cases, this proposal succeeds in providing

guidance, unlike Principal Value Theory∗.

And Invariant Value Theory(∗) does better than its rivals in other respects. Its basic approach is

similar to Principal Value Theory(∗), so seems at least as well motivated as that theory. In fact, it

seems strictly better -motivated than that theory—unlike Principal Value Theory(∗), the function of

prospects by which we evaluate them (PV or IV) is not one that requires a further, ad hoc restriction

on when we can use it. This theory can compare any pairs of prospects that have defined invariant

value/s, without excluding some subset that do not also satisfy the stability condition.

The theory can also be shown to have other advantages. As I show in other work (Wilkinson,

n.d.(a), §5), it upholds the verdicts of Principal Value Theory(∗) (and expected value theory, and

Relative Expectation Theory) but provides a strict extension of them: wherever that theory makes

a comparison, Invariant Value Theory(∗) will agree with it, but it can make many more comparisons
31We can obtain the same verdict here with the weaker version of Invariant Value Theory. The Aquila game’s

distribution is symmetrical about 0 and, as I show elsewhere (see Wilkinson, n.d.(a), §4), the invariant value of a
symmetrical distribution is always its median value. So the invariant value of the Aquila game is 0. Most importantly,
this means that its invariant value is defined, so it is equal to itself. We can therefore say that the two options in No
Change are equally good.
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as well. Indeed, even the weaker Invariant Value Theory (without the ∗) can compare a vast range of

different prospects to others, including any prospect with a symmetric distribution. And the stronger

version can compare any pair of prospects whose quantile functions are continuous and have their

second derivatives bounded above and below close to 0 and 1 (ibid. §5). This latter category is

extremely broad, and allows us to swap out the Aquila game for Skewed Aquila in the cases above

and the theory will still provide answers (more on this below). And I suspect that, even if we

develop models of humanity’s far future prospects more sophisticated than that described here, those

models will still give probability distributions with the necessary property. Or, at the very least, the

difference between such distributions available to us will give us a relative difference R(Oa, Ob) with

that property. This bodes well for our ability to compare our options in practice if Invariant Value

Theory∗ is true, even if the model I have described here are not perfectly accurate.

5 The remaining case for longtermism

We now know that, despite the presence of expectation-defying prospects, we can maintain risk

neutrality and still make comparisons in practice. But what, exactly, do these comparisons say?

In particular, even if we face prospects like the Aquila game, do those comparisons still justify

longtermism?

To determine the correct practical verdicts, now is a good time to consider slightly more realistic

prospects. As mentioned earlier, the Aquila game has a more realistic cousin: the Skewed Aquila

game. It seems to me far more likely that future lives are on average positive than that they are

negative—after all, we humans tend to seek out happiness rather than misery. Or, alternatively, you

might think it more likely that future lives are on average negative than that they are positive—

perhaps our descendants are particularly likely to succumb to scenarios of widespread misery (for

discussion of such possibilities, see Baumann, 2017). Either way, it seems implausible that, given our

evidence, the correct prospect over the total value of humanity’s future beyond time T is perfectly

symmetric; it will be skewed one way or the other.

Suppose we replace the basic Aquila game with the Skewed Aquila game in each of the above

four problem cases. Then, in the first two cases—No Change and Improving the Present—Invariant

Value Theory∗ delivers the same verdicts as above, and for the same reasons as above. But what

about the last two cases, Reducing Extinction Risk and Changing the Future?

In Reducing Extinction Risk, we reach a surprising verdict. If we compare the Skewed Aquila

game (O) to a sure outcome of value 0 (A), the invariant value of R(O,A) diverges to +∞ or to −∞
(if the game is skewed in the positive or negative direction, respectively). Likewise, if we compare

a mixture (Op) of Skewed Aquila with that outcome of value 0 to another, less probable mixture
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(Oq) then, again, IV
(
R(Op, Oq)

)
is positively or negatively infinite (depending on the direction the

game is skewed). So, if we face the prospect of the Skewed Aquila game skewed to the positive (or

negative direction) then, not only is it better (worse) to reduce the risk of human extinction than not

reduce it, it is infinitely better (worse). If we compared Op to a version of Oq with every outcome

sweetened by some finite value b, Op would remain better (worse) no matter how large b was, and

no matter how small the difference between the mixture’s probabilities p and q. Given a decision

between reducing the risk of extinction, however slightly, and providing some guaranteed benefit,

however large, it is always better (or always worse) to reduce the risk of extinction.

A similar result obtains in the last problem case, Changing the Future. If we compare one

(mixture of) the Skewed Aquila game to (a mixture of) another (with different a1 and a2), then

one option will often be infinitely better than the other. For instance, holding all else equal, if one

option has lower extinction rate, faster growth rate, and/or greater skew towards the average life

having positive value (and so a higher ratio a1
a2

), it will be infinitely better. So, if our future prospects

resemble the Skewed Aquila game, it will be not just an improvement but an infinite improvement if

we can slightly change these values. If we compare an option that raises, say, the starting population

at T by any tiny amount, to an option that sweetens every outcome by any finite positive value, it

turns out that the former is better.

These verdicts are not merely some quirk of Invariant Value Theory∗. They are what a risk-neutral

theory must say in such cases. Consider a ‘Skewed Pasadena’ or ‘Skewed Agnesi’ game (obtained from

the standard Pasadena and Agnesi games in the same way, by increasing/decreasing the probability

of positive/negative outcomes by a fixed proportion). For such games, Relative Expectation Theory∗

and Principal Value Theory∗ each say that increasing the games’ skew towards positive values is more

valuable than sweetening them by any finite value. Indeed, the difference between the probability

distributions of two such skewed games is roughly analogous to the St Petersburg game, which a

risk-neutral theory must say is better than any finite value (see Hájek and Nover, 2006, p. 706).

When facing the Aquila game, if a risk-neutral theory didn’t give us the above verdicts, we should

be sceptical that it was truly risk-neutral!

Given the above, Invariant Value Theory∗ supports longtermism, even if we face prospects like

the Aquila game in practice. It confirms that the best options available to us, in many important

decisions, are those that provide the greatest increases in the invariant value of what happens after

T . But given that we do face such prospects, it also implies a much stronger conclusion than

longtermism—it doesn’t just imply that it is often better to improve the far future than the present;

it implies that it is infinitely better to do so.

For instance, consider any option that even slightly reduces the probability of human extinction

in the near future—perhaps a decision of whether to donate to advocacy efforts against nuclear
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weapons. If our prospects over the future resemble a Skewed Aquila game, skewed in the positive

direction, then such an option will be infinitely better than an option that improves the world in

the near term with certainty (thereby improving every outcome). Or, if those prospects are skewed

in the negative direction, then options that increase the probability of extinction will be infinitely

better than those that merely improve the near-term future.

Alternatively, consider any option that even slightly changes the probability that future human

lives will, on average, have positive value—perhaps this might include a decision of whether to

campaign for changes in political institutions. Such an option shifts us from one Skewed Aquila game

to another one, with greater skew in the positive direction. This option will be infinitely better than

any alternative that only improves the world in the near term, even if the latter sweetens the outcome

no matter what else happens.

So, if we accept Invariant Value Theory∗ and we do indeed face prospects resembling the Skewed

Aquila game, then our best options will often be those that most improve the far future. Longtermism

holds. But not only that; those best options will be infinitely better than options that have no effect

on the far future. No matter how slight the changes to the parameters of our far future prospects

and no matter how great the benefits we could otherwise provide to the near future, our best options

will still be those that most improve the far future.

6 Conclusion

There is reason to think that our prospects for the total moral value of humanity defy expectations—

that their expected values are undefined, even if we assume that they can only result in finite value.

This is a serious problem for expected value theory as a candidate theory for comparing risky moral

options.

And, so too, it may seem to be a serious problem for the moral claim of longtermism. As it is often

justified by appeal to expected value theory, or to risk-neutrality more generally, those justifications

might be thought to stand or fall with that theory.

One possible response to this is to abandon the verdicts of expected value theory, in favour of some

alternative theory that exhibits risk sensitivity. By doing so we can, in effect, turn any expectation-

defying prospect into a better-behaved one, but at the cost of giving up the theoretical advantages

of risk neutrality. But is that the only possible solution to the problem?

It turns out that, instead, we can extend expected value theory to deal with expectation-defying

prospects. We can extend it even beyond the existing proposals of Colyvan (2008), Colyvan and

Hájek (2016), Easwaran (2008), Easwaran (2014a), and Meacham (2019), each of which carves off
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some of the remaining pairs of expectation-defying prospects for comparison. And, with Invariant

Value Theory∗, we can extend the theory far enough to deliver comparisons even for prospects that

plausibly describe the future of humanity: (those involving some probability of) the Aquila and

Skewed Aquila games.

Given these prospects, if we accept Invariant Value Theory∗ then the risk-neutral justification

for longtermism returns in even greater force. Again, certain options that improve the long-term

future will be vastly better than options that only improve the world in the near term. But, when

faced with prospects like the Skewed Aquila game, such options will now be infinitely better than

options that only improve the world in the near term—they will be better no matter how much we

could otherwise improve the world in the near term. If we are to maintain risk neutrality even in the

face of our real-world moral prospects, then this is the conclusion we are led to—that improving the

long-term future is not just valuable; it is vastly, overwhelmingly more valuable than anything else

we might ever seek to accomplish.
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