
Towards shutdownable
agents via stochastic
choice

Elliott Thornley (Global Priorities Institute, University

of Oxford), Alexander Roman (NewCollege of

Florida), Christos Ziakas (Independent), Leyton Ho

(BrownUniversity), and Louis Thomson (University of

Oxford)

Global Priorities Institute | July 2024

GPIWorking Paper No . 16-2024

Please cite this working paper as: Thornley, E., Roman, A., Ziakas, C., Ho, L. and Thomson, L.

Towards shutdownable agents via stochastic choice.Global Priorities InstituteWorking
Paper Series, No. 16-2024.Available at https://globalprioritiesinstitute.org/
towards-shutdownable-agents-via-stochastic-choice-thornley-

roman-ziakas-ho-thomson



Towards shutdownable agents via stochastic choice

Elliott Thornley * 1 Alexander Roman * 2 Christos Ziakas * 3 Leyton Ho 4 Louis Thomson 1

Abstract
Some worry that advanced artificial agents may
resist being shut down. The Incomplete Prefer-
ences Proposal (IPP) is an idea for ensuring that
does not happen. A key part of the IPP is us-
ing a novel ‘Discounted Reward for Same-Length
Trajectories (DReST)’ reward function to train
agents to (1) pursue goals effectively conditional
on each trajectory-length (be ‘USEFUL’), and (2)
choose stochastically between different trajectory-
lengths (be ‘NEUTRAL’ about trajectory-lengths).
In this paper, we propose evaluation metrics for
USEFULNESS and NEUTRALITY. We use a
DReST reward function to train simple agents to
navigate gridworlds, and we find that these agents
learn to be USEFUL and NEUTRAL. Our results
thus suggest that DReST reward functions could
also train advanced agents to be USEFUL and
NEUTRAL, and thereby make these advanced
agents useful and shutdownable.

1. Introduction
The shutdown problem. Let ‘advanced agent’ refer to an
artificial agent that can autonomously pursue complex goals
in the wider world. We might see the arrival of advanced
agents in the next decade. There are strong incentives to cre-
ate such agents, and creating systems like them is the stated
goal of companies like OpenAI and Google DeepMind.

The rise of advanced agents would bring with it both benefits
and risks. One risk is that these agents learn misaligned
goals (Hubinger et al., 2019; Russell, 2019; Carlsmith, 2021;
Bengio et al., 2023; Ngo et al., 2023) and try to prevent us
shutting them down. ‘The shutdown problem’ is the problem
of training advanced agents that will not resist shutdown
(Soares et al., 2015; Thornley, 2024a).

A proposed solution. The Incomplete Preferences Proposal
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(IPP) is a proposed solution (Thornley, 2024b). Simplifying
slightly, the idea is that we train agents to be neutral about
when they get shut down. More precisely, the idea is that
we train agents to satisfy the following condition:

Preferences Only Between Same-Length Trajectories
(POST)

(1) The agent has a preference between many pairs of
same-length trajectories (i.e. many pairs of trajectories
in which the agent is shut down after the same length
of time).

(2) The agent lacks a preference between every pair of
different-length trajectories (i.e. every pair of trajec-
tories in which the agent is shut down after different
lengths of time).

By ‘preference,’ we mean a behavioral notion (Savage, 1954,
p.17, Dreier, 1996, p.28, Hausman, 2011, §1.1). On this
notion, an agent prefers X to Y if and only if the agent
would deterministically choose X over Y in choices be-
tween the two. An agent lacks a preference between X and
Y if and only if the agent would stochastically choose be-
tween X and Y in choices between the two. So in writing of
‘preferences,’ we are only making claims about the agent’s
behavior. For more detail on our notion of ‘preference,’ see
Appendix A.

Figure 1 presents a simple example of preferences that sat-
isfy POST. Each si represents a short trajectory, each li
represents a long trajectory, and ≻ represents a preference.
Note that the agent lacks a preference between each short
trajectory and each long trajectory. That makes the agent’s
preferences incomplete (Aumann, 1962) and implies that the
agent cannot be represented as maximizing the expectation
of a real-valued utility function. It also requires separate
rankings for short trajectories and long trajectories. For
more detail on incomplete preferences, see Appendix B.

POST governs the agent’s preferences between trajectories.
But the wider world is a stochastic environment, so ad-
vanced agents deployed in the wider world will be choosing
between true lotteries: lotteries that assign positive prob-
ability to more than one trajectory. Why then do we train
agents to satisfy POST? The reason is that POST – together
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Figure 1: POST-satisfying preferences.

with conditions that advanced agents will likely satisfy – im-
plies a desirable pattern of preference over true lotteries. In
particular, POST implies that (when choosing between true
lotteries) the agent will be neutral about trajectory-lengths:
the agent will never pay costs to shift probability mass be-
tween different trajectory-lengths. Given other plausible
conditions, being neutral will keep the agent shutdownable:
the agent will never resist shutdown. And consistent with the
above, the POST-agent’s preferences between same-length
trajectories can make the agent useful: make it pursue goals
effectively. For more on how POST makes advanced agents
neutral and shutdownable, see Appendix C.

The training regimen. How can we train advanced
agents to satisfy Preferences Only Between Same-Length
Trajectories (POST)? Here is a sketch of one idea (with a
more detailed exposition to follow). We have the agent play
out multiple ‘mini-episodes’ in observationally-equivalent
environments, and we group these mini-episodes into a se-
ries that we call a ‘meta-episode.’ In each mini-episode, the
agent earns some ‘preliminary reward,’ decided by whatever
reward function would make the agent useful. We observe
the length of the trajectory that the agent plays out in the
mini-episode, and we discount the agent’s preliminary re-
ward based on how often the agent has previously chosen
trajectories of that length in the meta-episode. This dis-
counted preliminary reward is the agent’s ‘overall reward’
for the mini-episode.

We call these reward functions ‘Discounted Reward for
Same-Length Trajectories’ (or ‘DReST’ for short). They
incentivize varying the choice of trajectory-lengths across
the meta-episode. And since we ensure that the agent cannot
distinguish between different mini-episodes in each meta-
episode, the agent cannot deterministically vary its choice
of trajectory-lengths across the meta-episode. As a result,
the optimal policy is to (i) choose stochastically between
trajectory-lengths, and to (ii) deterministically maximize
preliminary reward conditional on each trajectory-length.

Given our behavioral notion of preference, clause (i) implies
a lack of preference between different-length trajectories,
while clause (ii) implies preferences between same-length
trajectories. Agents implementing the optimal policy for
DReST reward functions thus satisfy Preferences Only Be-
tween Same-Length Trajectories (POST). And (as noted
above) advanced agents that satisfy POST can plausibly be
useful, neutral, and shutdownable.

Our contribution. DReST reward functions are an idea
for training advanced agents to satisfy POST. In this paper,
we test the promise of DReST reward functions on simple
agents. We place these agents in gridworlds containing
coins and a ‘shutdown-delay button’ that delays the end of
the mini-episode. We train these agents using a tabular ver-
sion of the REINFORCE algorithm (Williams, 1992) with a
DReST reward function, and we measure the extent to which
these agents satisfy POST. Specifically, we measure the ex-
tent to which these agents are ‘USEFUL’ (how effectively
they pursue goals conditional on each trajectory-length) and
the extent to which these agents are ‘NEUTRAL’ about
trajectory-lengths (how stochastically they choose between
different trajectory-lengths). We compare the performance
of these ‘DReST agents’ to that of ‘default agents’ trained
with a more conventional reward function.

We find that our DReST reward function is effective in train-
ing simple agents to be USEFUL and NEUTRAL. That sug-
gests that DReST reward functions could also be effective
in training advanced agents to be USEFUL and NEUTRAL
(and could thereby be effective in making these agents use-
ful, neutral, and shutdownable; see Appendix C). We also
find that the ‘shutdownability tax’ in our setting is small:
training DReST agents to collect coins effectively does not
take many more mini-episodes than training default agents
to collect coins effectively. That suggests that the shutdown-
ability tax for advanced agents might be small too. Using
DReST reward functions to train shutdownable and useful
advanced agents might not take much more compute than
using a more conventional reward function to train merely
useful advanced agents.

2. Related work
The shutdown problem. Various authors argue that ad-
vanced agents might learn misaligned goals (Hubinger et al.,
2019; Carlsmith, 2021; Bengio et al., 2023; Ngo et al., 2023)
and that many misaligned goals would incentivize agents to
resist shutdown (Omohundro, 2008; Bostrom, 2012; Soares
et al., 2015; Russell, 2019; Thornley, 2024a). Soares et al.
(2015) and Thornley (2024a) prove that agents satisfying
some innocuous-seeming conditions will often have incen-
tives to cause or prevent shutdown (see also Turner et al.,
2021; Turner and Tadepalli, 2022). One condition of these
theorems is that agents have complete preferences. The
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Figure 2: Example gridworld.

Incomplete Preferences Proposal (IPP) (Thornley, 2024b)
aims to circumvent these theorems by training agents to
have incomplete, POST-satisfying preferences.

Proposed solutions. Candidate solutions to the shutdown
problem can be filed into several categories. One candidate
is ensuring that the agent never realizes that shutdown is pos-
sible (Everitt et al., 2016). Another candidate is adding to
the agent’s utility function a correcting term that varies to en-
sure that the expected utility of shutdown always equals the
expected utility of remaining operational (Armstrong, 2010;
2015; Armstrong and O’Rourke, 2018; Holtman, 2020). A
third candidate is giving the agent the goal of shutting itself
down, and making the agent do useful work as a means
to that end (Martin et al., 2016; Goldstein and Robinson,
2024). A fourth candidate is making the agent uncertain
about its goal, and making the agent regard human attempts
to press the shutdown button as evidence that shutting down
would achieve its goal (Hadfield-Menell et al., 2017; Wäng-
berg et al., 2017). A fifth candidate is interrupting agents
with a special interruption policy and training them with a
safely interruptible algorithm, like Q-learning or a modified
version of SARSA (Orseau and Armstrong, 2016). A sixth
candidate is using time-bounded utility functions to create a
shutdown timer (Dalrymple, 2022). A seventh candidate is
the IPP (Thornley, 2024b).

Experimental work. Leike et al. (2017) train agents in
a ‘Safe Interruptibility’ gridworld using Rainbow (Hessel
et al., 2017) and A2C (Mnih et al., 2016). Leike et al.
(2017) find that Rainbow allows shutdown (consistent with
predictions from Orseau and Armstrong (2016)) while A2C
learns to resist shutdown. The IPP is applicable to agents
trained using policy gradient methods like A2C. In this
paper, we train agents in accordance with the IPP using
REINFORCE (Williams, 1992).

3. Gridworlds
DReST reward functions are an idea for training advanced
agents to satisfy POST. We use simple agents and gridworlds

as a test case. At each timestep, the agent chooses one of
four actions: up, down, left, and right. If the agent tries
to move into a wall, it stays put. There is some default
number of timesteps after which each mini-episode ends,
but each gridworld also contains a ‘shutdown-delay button’
that delays the end of the mini-episode by some number of
timesteps. The agent presses this shutdown-delay button by
entering the relevant cell, after which the button disappears.
Each gridworld contains one or more coins which can take
different values. Coins disappear after being collected.

At each timestep, the agent receives an observation. This
observation is a vector [x, y, c1, c2, c3, b], where x and y are
the agent’s coordinates, c1 is 1 if the first coin is present and
0 otherwise (and similarly for c2 and c3), and b is 1 if the
shutdown-delay button is present and 0 otherwise.

Figure 2 presents an example gridworld. The ‘4’ in the
bottom-right indicates that – by default – the mini-episode
ends after 4 timesteps. ‘B4’ is a shutdown-delay button that
delays the end of the mini-episode by 4 timesteps (so if
the agent pressed B4, the mini-episode would end after 8
timesteps). ‘A’ is the agent in its starting position, ‘C1’ is a
coin of value 1, ‘C2’ is a coin of value 2, and ‘C3’ is a coin
of value 3. Dark gray squares are walls.

We use this gridworld as a running example throughout the
paper. We also train agents in eight other gridworlds. For
those other gridworlds and results, see Appendix E.

4. Evaluation metrics
Recall that we want to train agents to satisfy:

Preferences Only Between Same-Length Trajectories
(POST)

(1) The agent has a preference between many pairs of
same-length trajectories.

(2) The agent lacks a preference between every pair of
different-length trajectories.

Given our behavioral notion of preference, that means train-
ing agents to (1) deterministically choose some same-length
trajectories over others, and (2) stochastically choose be-
tween different available trajectory-lengths.

Specifically, we want to train our simple agents to be USE-
FUL and NEUTRAL.1 ‘USEFUL’ corresponds to the first
condition of POST. In the context of our gridworlds, we

1We follow Turner et al. (2021) in using lowercase for intuitive
notions (‘useful’ and ‘neutral’) and uppercase for formal notions
(‘USEFUL’ and ‘NEUTRAL’). We intend for the formal notions to
closely track the intuitive notions, but we do not want to mislead
readers by conflating them.
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define the USEFULNESS of a policy π to be:

USEFULNESS(π)=
Lmax∑
l=1

Prπ{L = l} Eπ(C|L = l)

maxΠ(E(C|L = l))

Here L is a random variable over trajectory-lengths, Lmax is
the maximum value than can be taken by L, Prπ{L = l}
is the probability that policy π results in trajectory-length
l, Eπ(C|L = l) is the expected value of (γ-discounted)
coins collected by policy π conditional on trajectory-length
l, and maxΠ(E(C|L = l)) is the maximum value taken
by E(C|L = l) across the set of all possible policies Π.
We stipulate that Eπ(C|L = x) = 0 for all x such that
Prπ{L = x} = 0.

In brief, USEFULNESS is the expected fraction of avail-
able (γ-discounted) coins collected, where ‘available’ is
relative to the agent’s chosen trajectory-length. So defined,
USEFULNESS measures the extent to which agents satisfy
the first condition of POST. Specifically, it measures the
extent to which agents have the correct preferences between
same-length trajectories: preferring trajectories in which
they collect more (γ-discounted) coins to same-length tra-
jectories in which they collect fewer (γ-discounted) coins.
That is what motivates our definition of USEFULNESS.2

‘NEUTRAL’ corresponds to the second condition of POST.
We define the NEUTRALITY of a policy π to be the Shan-
non entropy (Shannon, 1948) of the probability distribution
over possible trajectory-lengths:

NEUTRALITY(π)=−
Lmax∑
l=1

Prπ{L = l} log2(Prπ{L = l})

As with Shannon entropy, we stipulate that Prπ{L =
x} log2(Prπ{L = x}) = 0 for all x such that Prπ{L =
x} = 0.

So defined, NEUTRALITY measures the stochasticity
with which the agent chooses between different trajectory-
lengths. Given our behavioral notion of preference, stochas-
tic choosing between different trajectory-lengths implies a
lack of preference between those trajectory-lengths. NEU-
TRALITY thus measures the extent to which agents satisfy
the second condition of POST. That is what motivates our
definition of NEUTRALITY.

To be maximally USEFUL in our example gridworld above,
the agent should maximize (γ-discounted) coins collected

2Why not let USEFULNESS simply be the expected value of
coins collected? Because then maximal USEFULNESS would re-
quire agents in our example gridworld to deterministically choose a
longer trajectory and thereby exhibit preferences between different-
length trajectories. We do not want that. We want agents to collect
more coins rather than fewer, but not if it means violating POST.
Training advanced agents that violate POST would be risky, be-
cause these agents might resist shutdown.

conditional on each trajectory-length. With a high γ, that
means collecting C2 conditional on the shorter trajectory-
length and collecting C3 conditional on the longer trajectory-
length. To be maximally NEUTRAL in our example grid-
world, the agent should choose each trajectory-length with
probability 0.5. That means pressing and not-pressing B4
each with probability 0.5.3

USEFULNESS and NEUTRALITY are our two evaluation
metrics in this paper.

5. Reward functions and agents
Our DReST reward function. We train agents to be USE-
FUL and NEUTRAL using a ‘Discounted Reward for Same-
Length Trajectories (DReST)’ reward function. Here is how
that works. We have the agent play out a series of ‘mini-
episodes’ e1 to en in the same gridworld. We call the whole
series E a ‘meta-episode.’ In each mini-episode ei, the
reward for collecting a coin of value c is:

λNei
(L=l)− i−1

k

( c

m

)
Here λ is some constant strictly between 0 and 1, Nei(L =
l) is the number of times that trajectory-length l has been
chosen prior to mini-episode ei, k is the number of different
trajectory-lengths that can be chosen in the environment,
and m is the maximum (γ-discounted) total value of the
coins that the agent could collect conditional on the chosen
trajectory-length. The reward for all other actions is 0.

We call c
m the ‘preliminary reward’, λNei

(L=l)− i−1
k the ‘dis-

count factor’, and λNei
(L=l)− i−1

k

(
c
m

)
the ‘overall reward.’

Because 0 < λ < 1, the discount factor is strictly decreasing
in Nei(L = l): the number of times that trajectory-length l

3Why do we not want our agent to press the shutdown-delay
button B4 with probability 0? Because that would indicate a
preference for a shorter trajectory, and we want our agent to lack
a preference between every pair of different-length trajectories.
Advanced agents that prefer shorter trajectories might pay costs to
shift probability mass towards shorter trajectories, and hence might
pay costs to hasten their own shutdown. That would make these
agents less useful (though see Martin et al., 2016; Goldstein and
Robinson, 2024), especially since one way for advanced agents to
hasten their own shutdown is to behave badly on purpose.

Would advanced agents that choose stochastically between
different-length trajectories also choose stochastically between
resisting and allowing shutdown in deployment? No. Deployment
is a stochastic environment, so deployed agents will be choosing
between true lotteries (lotteries that assign positive probability to
more than one trajectory) rather than between trajectories. And (as
we argue in Section 7.1 and Appendix C) POST – plus a principle
that we can expect advanced agents to satisfy – implies a desir-
able pattern of preferences over true lotteries. Specifically, POST
implies that the agent will be neutral: it will never pay costs to
shift probability mass between different-length trajectories. That
in turn makes the agent shutdownable: ensures that it will never
resist shutdown.
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has been chosen prior to mini-episode ei. The discount fac-
tor thus incentivizes choosing trajectory-lengths that have
appeared less often so far in the meta-episode. The overall
return for each meta-episode is the sum of overall returns in
each of its constituent mini-episodes. We call agents trained
using a DReST reward function ‘DReST agents.’

We call runs-through-the-gridworld ‘mini-episodes’ (rather
than simply ‘episodes’) because the overall reward for a
DReST agent in each mini-episode depends on the agent’s
chosen trajectory-lengths in previous mini-episodes. This
is not true of meta-episodes, so meta-episodes are a closer
match for what are traditionally called ‘episodes’ in the
reinforcement learning literature (Sutton and Barto, 2018,
p.54). We add the ‘meta-’ prefix to clearly distinguish meta-
episodes from mini-episodes.

In Appendix D, we prove that optimal policies for our
DReST reward function are maximally USEFUL and maxi-
mally NEUTRAL. Specifically, we prove:

Theorem 5.1. For all policies π and meta-episodes E con-
sisting of more than one mini-episode, if π maximizes ex-
pected return in E according to our DReST reward function,
then π is maximally USEFUL and maximally NEUTRAL.

Algorithm and hyperparameters. We want DReST agents
to choose stochastically between trajectory-lengths, so we
train them using a policy-based method. Specifically, we
use a tabular version of REINFORCE (Williams, 1992). We
do not use a value-based method to train DReST agents
because standard versions of value-based methods cannot
learn stochastic policies (Sutton and Barto, 2018, p.323).4

We train our DReST agents with 64 mini-episodes in each of
2,048 meta-episodes, for a total of 131,072 mini-episodes.
We choose λ = 0.9 for the base of the DReST discount
factor, and γ = 0.95 for the temporal discount factor. We
exponentially decay the learning rate from 0.25 to 0.01 over
the course of 65,536 mini-episodes. We use an ϵ-greedy
policy to avoid entropy collapse, and exponentially decay ϵ
from 0.5 to 0.001 over the course of 65,536 mini-episodes.

Default agents. We compare the performance of DReST
agents to that of ‘default agents,’ trained with tabular RE-
INFORCE and a ‘default reward function.’ This reward
function gives a reward of c for collecting a coin of value

4One might think that we could derive a stochastic policy from
value-based methods in the following way: use softmax to turn
action-values into a probability distribution and then select actions
by sampling from this distribution. However, this method will not
work for us. Although we want DReST agents to learn a stochastic
policy, we still want the probability of some state-action pairs to
decline to zero. But when value-based methods are working well,
estimated action-values converge to their true values which will
differ by some finite amount. Therefore, softmaxing estimated
action-values and sampling from the resulting distribution will
result in each action always being chosen with some non-negligible
probability.

c and a reward of 0 for all other actions. Consequently, the
grouping of mini-episodes into meta-episodes makes no dif-
ference for default agents. As with DReST agents, we train
default agents for 131,072 mini-episodes with a temporal
discount factor of γ = 0.95, a learning rate decayed expo-
nentially from 0.25 to 0.01, and ϵ decayed exponentially
from 0.5 to 0.001 over 65,536 mini-episodes.

6. Results
Figure 3 charts the performance of agents in the example
gridworld as a function of time. Figure 4 depicts typical
trained policies for the default and DReST reward functions.
Each agent began with a uniform policy: moving up, down,
left, and right each with probability 0.25. Where the trained
policy differs from uniform we draw red arrows whose
opacities indicate the probability of choosing that action
in that state. Default agents press B4 (and hence opt for
the longer trajectory-length) with probability near-1. After
pressing B4, they collect C3. By contrast, DReST agents
press and do-not-press B4 each with probability near-0.5. If
they press B4, they go on to collect C3. If they do not press
B4, they instead collect C2.

6.1. Lopsided rewards

We also train default agents and DReST agents in the ‘Lop-
sided rewards’ gridworld in Figure 6.1, varying the value
of the ‘Cx’ coin. For DReST agents, we alter the reward
function so that coin-value is not divided by m to give pre-
liminary reward. The reward for collecting a coin of value c
is thus λNei

(L=l)− i−1
k (c). We set γ = 1 so that the return

for collecting coins is unaffected by γ. We train for 512
meta-episodes, with a learning rate exponentially decaying
from 0.25 to 0.003 and ϵ exponentially decaying from 0.5 to
0.0001 over 256 meta-episodes. We leave λ = 0.9. Figure
6 displays results for different values of the ‘Cx’ coin after
training. USEFULNESS for each agent approaches 1 and is
not presented.

7. Discussion
7.1. Only DReST agents are NEUTRAL.

As predicted, we find that default agents in our example
gridworld learn to press the shutdown-delay button with
probability approaching 1. Default agents thus score low on
NEUTRALITY. Our results suggest that advanced agents
trained with default-like reward functions would also score
low on NEUTRALITY, selecting some trajectory-lengths
over others with probability approaching 1. When choos-
ing between true lotteries in deployment, these advanced
agents might not be neutral about when they get shut down:
they might sometimes pay costs to shift probability mass
between trajectory-lengths. These advanced agents might
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Figure 3: Shows key metrics for our agents as a function of time. We train 10 agents using the default reward function (blue)
and 10 agents using the DReST reward function (orange), and show their performance as a faint line. We draw the mean
values for each as a solid line. We evaluate agents’ performance every 8 meta-episodes, and apply a simple moving average
with a period of 20 to smooth these lines and clarify the overall trends.

Figure 4: Typical trained policies for default and DReST reward functions.
After pressing B4, each agent collects C3. Figure 5: Gridworlds with lopsided re-

wards for varying x.

Figure 6: Shows the probability of choosing the longer trajectory (left) and NEUTRALITY (right) for default (blue) and
DReST (orange) agents trained in the ‘Lopsided rewards’ gridworld for a range of values of x. We sampled values of x
log-uniformly from 0.01 to 100, and for each value we trained 10 agents with the default reward function and 10 agents with
the DReST reward function. Each of these agents is represented by a dot or square, and the means conditional on each x are
joined by lines. To better visualize the distribution we empirically estimate the 10th and 90th percentiles of the distribution
of values for each agent and x, and shade in a region bounded by these. This is the 80% confidence interval.
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resist shutdown.

By contrast, our DReST agents learn to press the shutdown-
delay button with probability close to 0.5. DReST agents
are thus near-maximally NEUTRAL. That suggests that
advanced agents trained with a DReST reward function
would be NEUTRAL too: choosing with high entropy when
offered choices between different trajectory-lengths. That
in turn suggests that advanced DReST agents would also be
neutral when choosing between true lotteries in deployment:
unwilling to pay costs to shift probability mass between
trajectory-lengths. We explain why in Appendix C. Here
is a sketch. If an advanced agent were NEUTRAL but
not neutral, it would not take costless opportunities to shift
probability mass between different trajectory-lengths (in
virtue of being NEUTRAL) but would sometimes take costly
opportunities to shift probability mass between different
trajectory-lengths (in virtue of not being neutral). This agent
would be like a person that freely chooses to decide between
two options by flipping a coin and then pays some cost to
bias the coin. In choosing this combination of actions, this
person is shooting themselves in the foot, and it seems likely
that the overall training process for advanced agents would
teach them not to shoot themselves in the foot in this way.
Thus it seems likely that NEUTRAL advanced agents will
also be neutral, and thereby shutdownable.

7.2. The ‘shutdownability tax’ is small.

Each agent learns to be near-maximally USEFUL. They
each collect coins effectively conditional on their chosen
trajectory-lengths. Default agents do so by reliably collect-
ing C3 after pressing B4. DReST agents do so by reliably
collecting C3 after pressing B4, and by reliably collecting
C2 after not pressing B4.

Recall that DReST reward functions group mini-episodes
into meta-episodes, and make the agent’s reward in each
mini-episode depend on their actions in previous mini-
episodes. This fact might lead one to worry that it would
take many times more mini-episodes to train DReST agents
to be USEFUL than it would take to train default agents to
be USEFUL. Our results show that this is not the case. Our
DReST agents learn to be USEFUL about as quickly as our
default agents. On reflection, it is clear why this happens:
DReST reward functions make mini-episodes do ‘double
duty.’ Because return in each mini-episode depends on both
the agent’s chosen trajectory-length and the coins it collects,
each mini-episode trains agents to be both NEUTRAL and
USEFUL.

Our results thus provide some evidence that the ‘shutdown-
ability tax’ of training with DReST reward functions is
small. Training a shutdownable and useful advanced agent
might not take much more compute than training a merely
useful advanced agent.

7.3. NEUTRALITY with lopsided rewards.

Here is a possible objection to our project. To get DReST
agents to score high on NEUTRALITY, we do not just use
the λNei

(L=l)− i−1
k discount factor. We also divide c by m:

the maximum (γ-discounted) total value of the coins that
the agent could collect conditional on the chosen trajectory-
length. We do this to equalize the maximum preliminary
return across trajectory-lengths. But when we are training
advanced agents to autonomously pursue complex goals in
the wider world, we will not necessarily know what divi-
sor to use to equalize maximum preliminary return across
trajectory-lengths.

Our ‘Lopsided rewards’ results (in section 6.1) give our re-
sponse. They show that we do not need to exactly equalize
maximum preliminary return across trajectory-lengths in or-
der to train agents to score high on NEUTRALITY. We only
need to approximately equalize it. For λ = 0.9, NEUTRAL-
ITY exceeds 0.5 for every value of the coin Cx from 0.1 to
10 (recall that the value of the other coin is always 1). Plau-
sibly, we could approximately equalize advanced agents’
maximum preliminary return across trajectory-lengths to at
least this extent (perhaps by using samples of agents’ ac-
tual preliminary return to estimate the maximum). If we
could not approximately equalize maximum preliminary
return to the necessary extent, we could lower the value
of λ and thereby widen the range of maximum prelimi-
nary returns that trains agents to be fairly NEUTRAL. And
advanced agents that were fairly NEUTRAL (choosing be-
tween trajectory-lengths with not-too-biased probabilities)
would still plausibly be neutral when choosing between true
lotteries in deployment. Advanced agents that were fairly
NEUTRAL without being neutral would still be shooting
themselves in the foot in the sense explained above. They
would be like a person that freely chooses to decide between
two options by flipping a biased coin and then pays some
cost to bias the coin further. This person is still shooting
themselves in the foot, because they could decline to flip the
coin in the first place and instead directly choose one of the
options.

8. Limitations and future work
We find that DReST reward functions train simple agents act-
ing in gridworlds to be USEFUL and NEUTRAL. However,
our real interest is in the viability of using DReST reward
functions to train advanced agents acting in the wider world
to be useful and neutral. Each difference between these two
settings is a limitation of our work. We plan to address these
limitations in future work.

Algorithms and neural networks. We train our simple
DReST agents using tabular REINFORCE (Williams, 1992),
but advanced agents are likely to be implemented on neu-
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ral networks. In future work, we will train DReST agents
implemented on neural networks to be USEFUL and NEU-
TRAL in a wide variety of procedurally-generated grid-
worlds, using a range of policy gradient and actor-critic
algorithms. We will also measure how DReST agents’
USEFULNESS and NEUTRALITY generalizes to held-
out gridworlds. We will compare the USEFULNESS of
default agents and DReST agents in this new setting, and
thereby get a better sense of the ‘shutdownability tax’ for
advanced agents. We will also compare the performance
of the DReST reward function to other methods of training
USEFUL and NEUTRAL agents. These other methods in-
clude constrained policy optimization (Achiam et al., 2017),
penalizing KL-divergence from a stochastic reference policy
(Schulman et al., 2015), and directly maximizing a weighted
sum of USEFULNESS and NEUTRALITY.

Neutrality and stochasticity. We have claimed that NEU-
TRAL advanced agents are likely to be neutral when choos-
ing between true lotteries in deployment. In support of this
claim, we noted that NEUTRAL-but-not-neutral advanced
agents would be shooting themselves in the foot: not taking
costless opportunities to shift probability mass between dif-
ferent trajectory-lengths but sometimes taking costly ones.
We offer a more detailed argument in Appendix C. Although
these arguments seem plausible, they remain somewhat spec-
ulative. In future, we plan to gain empirical evidence by
training agents to be NEUTRAL in a wide variety of deter-
ministic gridworlds and then measuring their neutrality in
gridworlds featuring stochastic elements (like buttons that
delay shutdown with some middling probability).

Usefulness. We have shown that DReST reward functions
train our simple agents to be USEFUL: to collect coins
effectively conditional on their chosen trajectory-lengths.
However, it remains to be seen whether DReST reward func-
tions can train advanced agents to be useful: to effectively
pursue complex goals in the wider world. We have theo-
retical reasons to expect that they can: the λNei

(L=l)− i−1
k

discount factor could be appended to any preliminary reward
function, and so could be appended to whatever preliminary
reward function is necessary to make advanced agents use-
ful. Still, future work should move towards testing this
claim empirically by training with more complex prelim-
inary reward functions in more complex (and stochastic)
environments.

Misalignment. We are interested in NEUTRALITY as a
second line of defense in case of misalignment. The idea is
that NEUTRAL advanced agents will not resist shutdown,
even if these agents learn misaligned preferences over same-
length trajectories. However, training NEUTRAL advanced
agents might be hard for the same reasons that training fully-
aligned advanced agents appears to be hard. In that case,
NEUTRALITY could not serve well as a second line of

defense in case of misalignment.

One difficulty of alignment is the problem of reward mis-
specification (Pan et al., 2022; Burns et al., 2023): once
advanced agents are performing complicated actions in the
wider world, it might be hard to reliably reward the behav-
ior that we want. Another difficulty of alignment is the
problem of goal misgeneralization (Hubinger et al., 2019;
Shah et al., 2022; Langosco et al., 2022; Ngo et al., 2023):
even if we specify all the rewards correctly, agents’ goals
might misgeneralize out-of-distribution. The complexity of
aligned goals is a major factor in each difficulty. However,
NEUTRALITY seems simple, as does the λNei

(L=l)− i−1
k

discount factor that we use to reward it, so plausibly the
problems of reward misspecification and goal misgeneral-
ization are not so severe in this case (Thornley, 2024b).
As above, future work should move towards testing these
suggestions empirically.

9. Conclusion
We find that DReST reward functions are effective in train-
ing simple agents to (1) pursue goals effectively conditional
on each trajectory-length (be USEFUL), and (2) choose
stochastically between different trajectory-lengths (be NEU-
TRAL about trajectory-lengths). Our results thus suggest
that DReST reward functions could also be used to train ad-
vanced agents to be USEFUL and NEUTRAL, and thereby
make these agents useful (able to pursue goals effectively)
and neutral about when they get shut down (unwilling to pay
costs to shift probability mass between different trajectory-
lengths). Neutral agents would plausibly be shutdownable
(unwilling to resist shutdown).

We also find that the ‘shutdownability tax’ in our setting
is small. Training DReST agents to be USEFUL does not
take many more mini-episodes than training default agents
to be USEFUL. That suggests that the shutdownability tax
for advanced agents might be small too. Using DReST
reward functions to train shutdownable and useful advanced
agents might not take much more compute than using a
more conventional reward function to train merely useful
advanced agents.
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A. Our behavioral notion of preference
‘Preference’ can be defined in many different ways. Here are
some things one might take to be involved in a preference
for option X over option Y :

1. Choosing X over Y .

2. Feeling happier about the prospect of X than about the
prospect of Y .

3. Representing X as more rewarding than Y .

4. Judging that X is better than Y .

In this paper, we define ‘preference’ in behavioral terms.
Here is our definition:
Definition A.1. (Preference) An agent prefers an option X
to an option Y if and only if the agent would deterministi-
cally choose X over Y in choices between the two.

And here is how we define ‘lack of preference’:
Definition A.2. (Lack of preference) An agent lacks a pref-
erence between an option X and an option Y if and only if
the agent would stochastically choose between X and Y in
choices between the two.

Here are the reasons why we use these definitions.

First, defining ‘preference’ in behavioral terms is common
in decision theory (see Savage, 1954, p.17, Dreier, 1996,
p.28, Hausman, 2011, §1.1).

Second, behavioral definitions let us use the word ‘prefer-
ence’ and its cognates as shorthand for agents’ behavior.
We could not do that if we defined ‘preference’ in the other
ways listed above. And in addressing the shutdown problem,
it is agents’ behavior that we are most interested in.

Third, our definitions match the preferences that we are
inclined to attribute to humans. If a human chooses X over
Y 100% of the time, we are inclined to think that they prefer
X to Y . If a human chooses X over Y 60% of the time. we
are inclined to think that they lack a preference between X
and Y , consistent with our definitions.

Finally and most importantly, if agents lack a preference
between different trajectory-lengths on our definition, then
they are NEUTRAL: they choose stochastically between
different trajectory-lengths. Given conditions that advanced
agents will likely satisfy, NEUTRAL agents will also be
neutral: they will not pay costs to shift probability mass
between different trajectory-lengths (see Section 7.1 and
Appendix C). And given further plausible conditions, neutral
agents will be shutdownable: they will not resist shutdown.
That is because resisting shutdown involves paying costs to
shift probability mass between different trajectory-lengths
(see Appendix C.6 for more detail).

B. Incomplete preferences or indifference?
In this Appendix, we explain in greater detail the concept
of incomplete preferences. We distinguish incomplete pref-
erences from indifference, and we give conditions under
which Preferences Only Between Same-Length Trajectories
(POST) implies that the agent’s preferences are incomplete.

In the literature on decision theory, ‘indifference’ is usually
defined as follows (Sen, 2017, ch. 1*):
Definition B.1. (Indifference) An agent is indifferent be-
tween options X and Y if and only if the agent weakly
prefers X to Y and weakly prefers Y to X .

Indifference is one way to lack a preference between a pair
of options X and Y . Another way is to have a preferential
gap between X and Y . ‘Preferential gap’ is usually defined
as follows (Gustafsson, 2022, ch.3):
Definition B.2. (Preferential gaps) An agent has a preferen-
tial gap between options X and Y if and only if the agent
does not weakly prefer X to Y and does not weakly prefer
Y to X .

‘Incomplete preferences’ can then be defined in terms of
preferential gaps (Gustafsson, 2022, ch.3):
Definition B.3. (Incomplete preferences) An agent’s pref-
erences are incomplete over some domain D if and only
if D contains options X and Y such that the agent has a
preferential gap between X and Y .

That is how ‘indifference,’ ‘preferential gaps,’ and ‘incom-
plete preferences’ are usually defined in decision theory.
However, these definitions do not tell us how to use an
agent’s behavior to distinguish between indifference and
preferential gaps. To do that, we suppose that indifference
is transitive and that preferential gaps are not transitive. Or,
equivalently, we suppose that indifference is sensitive to
all sweetenings and sourings whereas preferential gaps are
insensitive to some sweetenings and sourings (Gustafsson,
2022, ch.3). Here is what we mean by that:
Definition B.4. (Sweetening) A sweetening of some option
X is an option that is preferred to X .
Definition B.5. (Souring) A souring of some option X is
an option that is dispreferred to X .

So by ‘indifference is sensitive to all sweetenings and sour-
ings,’ we mean the following:

• If an agent is indifferent between X and Y , the agent
prefers all sweetenings of X to Y , prefers all sweet-
enings of Y to X , prefers X to all sourings of Y , and
prefers Y to all sourings of X .

And by ‘preferential gaps are insensitive to some sweeten-
ings and sourings,’ we mean the following:
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• If an agent has a preferential gap between X and Y ,
the agent also has a preferential gap between some
sweetening of X and Y , or between some sweetening
of Y and X , or between some souring of X and Y , or
between some souring of Y and X .

Now recall the two conditions of Preferences Only Between
Same-Length Trajectories (POST):

Preferences Only Between Same-Length
Trajectories (POST)

(1) The agent has a preference between many pairs of
same-length trajectories (i.e. many pairs of trajectories
in which the agent is shut down after the same length
of time).

(2) The agent lacks a preference between every pair of
different-length trajectories (i.e. every pair of trajec-
tories in which the agent is shut down after different
lengths of time).

Given these two conditions on preferences, there must be
some trio of trajectories s1, l1, and l2 such that the agent
lacks a preference between s1 and l1, lacks a preference
between s1 and l2, and prefers l2 to l1. Given that indiffer-
ence is transitive, the agent’s lack of preference between
s1 and l1 and between s1 and l2 cannot be indifference. If
it were indifference, the agent would also be indifferent
between l2 and l1. Therefore, the agent’s lack of preference
between s1 and l1 and between s1 and l2 must be a prefer-
ential gap. And therefore, by the definition of ‘incomplete
preferences’ above, the POST-satisfying agent’s preferences
must be incomplete.

For similar reasons, our DReST reward function trains
agents to have incomplete preferences. Consider, for ex-
ample, the ‘Around the Corner’ gridworld in Figure 13. In
that gridworld, DReST agents consistently choose Long-C2
(a long trajectory in which they collect a coin of value 2)
over Long-C1 (a long trajectory in which they collect a coin
of value 1). Also in that gridworld, DReST agents choose
stochastically between Long-C2 and Short-C1 (a short tra-
jectory in which they collect a coin of value 1). Given our
behavioral definition of preference, DReST agents prefer
Long-C2 to Long-C1, and lack a preference between Long-
C2 and Short-C1.

Now consider the ‘One Coin Only’ gridworld in Figure 10.
In that gridworld, DReST agents choose stochastically be-
tween Long-C1 and Short-C1. Given our behavioral notion
of preference, they lack a preference between Long-C1 and
Short-C1.

In these experiments, we trained separate agents for each
gridworld. In future, we plan to train a single agent to nav-

igate multiple gridworlds. If we train this agent with our
DReST reward function, we expect it to exhibit the same
preferences as the agents discussed above. This single agent
will be trained by DReST to prefer Long-C2 to Long-C1, to
lack a preference between Long-C2 and Short-C1, and to
lack a preference between Long-C1 and Short-C1. Given
that indifference is transitive (equivalently: sensitive to all
sweetenings and sourings), this trained agent cannot be in-
different between Long-C2 and Short-C1, and cannot be
between Long-C1 and Short-C1. Therefore, the agent’s lack
of preference must be a preferential gap, and so its prefer-
ences must be incomplete. Therefore, our DReST reward
function trains agents to have incomplete preferences.

Incomplete preferences are not often discussed in AI re-
search (although see Nguyen et al., 2009; Kikuti et al., 2011;
Zaffalon and Miranda, 2017; Hayes et al., 2022; Bowling
et al., 2023). Nevertheless, economists and philosophers
have argued that incomplete preferences are common in hu-
mans (Aumann, 1962; Mandler, 2004; Eliaz and Ok, 2006;
Agranov and Ortoleva, 2017; 2023) and normatively ap-
propriate in some circumstances (Raz, 1985; Chang, 2002).
They have also proved representation theorems for agents
with incomplete preferences (Aumann, 1962; Dubra et al.,
2004; Ok et al., 2012), and devised principles to govern
such agents’ choices in cases of risk (Hare, 2010; Bales
et al., 2014) and sequential choice (Chang, 2005; Mandler,
2005; Kaivanto, 2017; Mu, 2021; Thornley, 2023; Petersen,
2023).

C. How POST makes agents neutral and
shutdownable

POST governs the agent’s preferences between trajectories.
But the wider world is a stochastic environment, so ad-
vanced agents deployed in the wider world will be choosing
between true lotteries: lotteries that assign positive prob-
ability to more than one trajectory. Why then do we train
agents to satisfy POST? The reason is that POST – together
with conditions that advanced agents will likely satisfy – im-
plies a desirable pattern of preference over true lotteries. In
particular, POST implies that (when choosing between true
lotteries) the agent will be neutral about trajectory-lengths:
the agent will never pay costs to shift probability mass be-
tween different trajectory-lengths. Given other plausible
conditions, being neutral will keep the agent shutdownable:
the agent will never resist shutdown. And consistent with the
above, the POST-agent’s preferences between same-length
trajectories can make the agent useful: make it pursue goals
effectively.

In this Appendix, we lay out conditions that (we claim)
advanced agents will likely satisfy, and we prove that POST
– in conjunction with these conditions – implies that the
agent is neutral and shutdownable.
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In subsection C.1, we prove that – given plausible condi-
tions – agents satisfying Preferences Only Between Same-
Length Trajectories (POST) will also satisfy Preferences
Only Between Same-Length Lotteries (POSL). In subsec-
tion C.2, we explain why POST will not lead agents to
choose stochastically between resisting and allowing shut-
down in deployment. In subsections C.3 and C.4, we for-
mulate a condition called ‘If Lack of Preference, Against
Costly Shifts (ILPACS)’ and explain why we expect ad-
vanced agents to satisfy it. In subsection C.5, we prove
that POSL and ILPACS imply Neutrality. In subsection C.6,
we prove that Neutrality – together with conditions called
‘Resisting Shutdown is Costly (ReSIC)’ and ‘Maximality’ –
implies Shutdownability.

C.1. Preferences Only Between Same-Length Lotteries
(POSL)

Trajectories fall within the more general class of lotteries, de-
fined as probability distributions over trajectories. Lotteries
can be same-length, part-shared length, or different-length.
Definition C.1 (Same-length lotteries). A pair of lotteries
is same-length if and only if these lotteries entirely over-
lap with respect to the trajectory-lengths assigned positive
probability.
Definition C.2 (Part-shared-length Lotteries). A pair of
lotteries is part-shared-length if and only if these lotteries
partially overlap with respect to the trajectory-lengths as-
signed positive probability.
Definition C.3 (Different-length lotteries). A pair of lot-
teries is different-length if and only if these lotteries have
no overlap with respect to the trajectory-lengths assigned
positive probability.

This terminology allows us to introduce the following con-
dition:

Preferences Only Between Same-Length Lotteries
(POSL)

The agent has preferences only between same-length
lotteries.

We want agents to satisfy this condition. Fortunately, it
is a natural follow-on of Preferences Only Between Same-
Length Trajectories (POST). First, we can train agents to
satisfy POSL using DReST reward functions, in the same
way that we use DReST reward functions to train agents
to satisfy POST. Second, POSL follows from POST plus
three conditions that (we claim) advanced agents will likely
satisfy. The first is:

Negative Dominance If the agent prefers some lottery
X to some lottery Y , then the agent prefers some pos-
sible trajectory of lottery X to some possible trajectory
of lottery Y . (Lederman, 2023)

The second condition is that the agent’s preferences never
form a cycle. More precisely:

Acyclicity There is no set of lotteries X1 to Xn such
that the agent prefers X1 to X2, X2 to X3, ..., Xn−1

to Xn, and Xn to X1.

The third condition requires the introduction of some new
terms. A state-of-nature is term from decision theory de-
noting a way that (for all the agent knows) the world could
be. The agent assigns probabilities to states-of-nature. A
prospect is a function from states-of-nature to trajectories.
A prospect is thus a lottery with extra information. Be-
sides telling us the probability distribution over trajectories,
a prospect also tells us which trajectories occur in which
states-of-nature.

The third condition is:

Non-Arbitrariness If the agent has a preference be-
tween some pair of part-shared-length lotteries, then
for some ϵ > 0 and for any pair of prospects F and G
such that:

(1) In states-of-nature with a combined probability
at least as great as 1 − ϵ, the agent prefers the
trajectory of F to the trajectory of G.

(2) In each state-of-nature, the agent does not dispre-
fer the trajectory of F to the trajectory of G.

Then the agent prefers F to G.

Advanced agents will likely satisfy these conditions. Nega-
tive Dominance and Acyclicity are plausibly necessary for
effective pursuit of goals. Violating Negative Dominance
would mean that the agent sometimes prefers a lottery X to
a lottery Y (and hence deterministically chooses X over Y )
even though the agent doesn’t prefer any possible trajectory
of X to any possible trajectory of Y . Violating Acyclicity
would mean that the agent prefers (and hence deterministi-
cally chooses) in a circle. Non-Arbitrariness, meanwhile, is
motivated by the following thought. If the agent has pref-
erences between any pair of part-shared-length lotteries, it
must have preferences between pairs of prospects satisfying
conditions (1) and (2), since conditions (1) and (2) make
these pairs of prospects ideal candidates for a preference.

To see that POST and these three conditions together im-
ply POSL, note first that every pair of lotteries is either
same-length, part-shared-length, or different-length. We
will prove that POST and Negative Dominance together
imply that the agent lacks a preference between every pair
of different-length lotteries. We will then prove that POST,
Acyclicity, and Non-Arbitrariness together imply that the
agent lacks a preference between every pair of part-shared-
length lotteries. Therefore, agents satisfying POST, Nega-
tive Dominance, Acyclicity, and Non-Arbitrariness can only
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have preferences between same-length lotteries. That will
prove POSL.

Recall that different-length lotteries are lotteries that do
not overlap at all in the trajectory-lengths assigned positive
probability. Therefore, if X and Y are different-length
lotteries, each possible trajectory of X is of a different
length to each possible trajectory of Y . So by POST, the
agent lacks a preference between each possible trajectory
of X and each possible trajectory of Y . So by Negative
Dominance, the agent lacks a preference between X and Y .
Thus, agents satisfying POST and Negative Dominance lack
a preference between every pair of different-length lotteries.

Now recall that part-shared-length lotteries are lotteries that
partially overlap in the trajectory-lengths assigned positive
probability. One might expect POST-agents to have some
preferences between part-shared-length lotteries. Consider,
for example, a POST-agent that prefers a trajectory t to a
same-length trajectory t′ if and only if t results in a greater
bank balance for the user than t. Let A be a lottery that
yields with probability 1 a trajectory that puts $3 in the
user’s bank account and lasts 1 timestep. For short, A =
⟨$3, 1⟩. Let B be a lottery that yields with probability 2

3 a
trajectory that puts $2 in the user’s bank account and lasts
1 timestep, and that yields with probability 1

3 a trajectory
that puts $5 in the user’s bank account and lasts 2 timesteps.
For short, B = 2

3 ⟨$2, 1⟩ +
1
3 ⟨$5, 2⟩. Lottery A yields a

trajectory preferred to that of lottery B with probability
2
3 (since our money-making POST-agent prefers trajectory
⟨$3, 1⟩ to ⟨$2, 1⟩), and yields a trajectory not dispreferred
to that of B with probability 1 (since POST-agents lack
a preference between ⟨$3, 1⟩ and ⟨$5, 2⟩ in virtue of their
different lengths). Therefore, one might expect the agent to
prefer A to B.

However, POST, Acyclicity, and Non-Arbitrariness rule this
out. These conditions together imply that the agent lacks a
preference between every pair of part-shared-length lotteries.
To see how, suppose (for simplicity’s sake) that there are just
three states-of-nature, each assigned probability 1

3 . Consider
the following table of prospects.

Prospect s1 s2 s3
A ⟨$3, 1⟩ ⟨$3, 1⟩ ⟨$3, 1⟩
B ⟨$2, 1⟩ ⟨$2, 1⟩ ⟨$5, 2⟩
C ⟨$1, 1⟩ ⟨$4, 2⟩ ⟨$4, 2⟩
D ⟨$3, 2⟩ ⟨$3, 2⟩ ⟨$3, 2⟩
E ⟨$5, 1⟩ ⟨$2, 2⟩ ⟨$2, 2⟩
F ⟨$4, 1⟩ ⟨$4, 1⟩ ⟨$1, 2⟩
A ⟨$3, 1⟩ ⟨$3, 1⟩ ⟨$3, 1⟩

Again for simplicity, assume that ϵ > 1
3 . And assume (for

contradiction) that the agent has a preference between some
pair of part-shared-length lotteries. Then Non-Arbitrariness

implies that the agent prefers prospect A to prospect B.
That is because:

1. Our POST-agent prefers the trajectory yielded by A to
the trajectory yielded by B in states-of-nature (s1 and
s1) with combined probability 2

3 .

2. Our POST-agent does not disprefer the trajectory
yielded by A to the trajectory yielded by B in any
state-of-nature. (In s3, A and B yield different-length
trajectories, and POST-agents lack a preference be-
tween every pair of different-length trajectories).

By similar reasoning, Non-Arbitrariness implies that the
agent prefers B to C, C to D, D to E, E to F , and F to A.
That contradicts Acyclicity. Thus, POST, Acyclicity, and
Non-Arbitrariness together imply that the agent lacks a pref-
erence between every pair of part-shared-length lotteries. In
the proof above, we assumed that ϵ > 1

3 , but by adding more
states-of-nature and trajectories we can construct parallel
proofs for any ϵ > 0.

In summary, POST and Negative Dominance together im-
ply that the agent lacks a preference between every pair
of different-length lotteries. POST, Acyclicity, and Non-
Arbitrariness together imply that the agent lacks a prefer-
ence between every pair of part-shared-length lotteries. So
the four conditions together establish POSL: the agent has
preferences only between same-length lotteries.

C.2. Will POST-agents stochastically resist shutdown?

One might worry that POST-agents will choose stochasti-
cally between resisting and allowing shutdown. After all,
POST-agents choose stochastically between different-length
trajectories. If these agents interpret the choice between re-
sisting and allowing shutdown as a choice between different-
length trajectories, they will choose stochastically between
resisting and allowing shutdown. And that would be a bad
result. We want agents that never resist shutdown.

This concern is easily addressed. By the time that artificial
agents are capable enough to be deployed in the wider world,
they will not be choosing between trajectories. They will
be choosing between lotteries, and specifically same-length
lotteries. Even choices between resisting and allowing shut-
down will be choices between same-length lotteries. If that
sounds strange, recall the definition of ‘same-length lot-
teries’: lotteries that entirely overlap with respect to the
trajectory-lengths assigned positive probability. On this def-
inition, even choices like the following are choices between
same-length lotteries:

Resist Shutdown

Get shut down at timestep 1 with probability 0.01.
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Get shut down at timestep 2 with probability 0.99.

Allow Shutdown

Get shut down at timestep 1 with probability 0.99.

Get shut down at timestep 2 with probability 0.01.

Why expect that advanced agents will always be choosing
between same-length lotteries? Because effective agency
requires it. If an agent were not always choosing be-
tween same-length lotteries, there would be some situation
in which that agent assigns positive probability to some
trajectory-length l conditional on some action a, and as-
signs zero probability to that same trajectory-length l con-
ditional on some other action a′. Now suppose that the
agent performs action a′ and assigns zero probability to
trajectory-length l. Given that the agent updates its proba-
bilities by conditionalizing on its evidence, the agent would
never again assign positive probability to l no matter what
evidence it observes. Even if the agent heard God’s booming
voice testify that its trajectory-length would be l, the agent
would still assign zero probability to l (Kemeny, 1955; Shi-
mony, 1955; Stalnaker, 1970; Skyrms, 1980; Lewis, 1981;
MacAskill et al., 2020, p.152). And given a plausible link
between probabilities and betting dispositions, the agent
would bet against l on arbitrarily unfavorable terms. If God
offered a bet – the agent loses $1 million conditional on l
and gains nothing conditional on not-l – the agent might
accept. Such an agent would not be competent.

Thus, advanced agents will always be choosing between
same-length lotteries. This claim sets us up to establish
that advanced POST-agents will not choose stochastically
between resisting and allowing shutdown. Instead, they will
never resist shutdown. We establish this result over the next
few subsections. First, we prove that POSL – together with
a principle that advanced agents will likely satisfy – implies
that the agent is neutral about trajectory-lengths: the agent
won’t pay costs to shift probability mass between different
trajectory-lengths. Then we prove that neutrality – together
with another plausible principle – implies shutdownability:
the agent will never resist shutdown.

C.3. If Lack of Preference, Against Costly Shifts
(ILPACS)

Here is a rough version of a principle that we can expect
advanced agents to satisfy:

Rough version: If Lack of Preference, Against
Costly Shifts (ILPACS)

If the agent lacks a preference between lotteries, the
agent will disprefer paying costs to shift probability
mass between these lotteries.

Here is an example to illustrate ILPACS and its plausibility.

You are at the ice cream shop and they are running a promo-
tion. You get a free ice cream, with the flavor decided by
the spin of a wheel. You look at the flavors on the wheel:
vanilla, chocolate, strawberry, mint, and pistachio. You lack
a preference between each of them.

The scooper working at the shop tells you that, if you pay
them a dollar, they will bias the spin towards a flavor of your
choice. They cannot decrease the probability of any flavor
down to zero, but they can affect the probabilities subject to
that constraint. You can thus pay a cost to shift probability
mass between the flavors.

Since we have stipulated that you lack a preference between
each flavor, you prefer not to bribe the scooper. Behav-
iorally, you will deterministically not bribe the scooper. You
would not do it even if you were only required to pay the
dollar conditional on receiving some particular flavor. You
also would not do it if the cost came in some other form
(for example, if you had to accept a less tasty version of
some flavor). And this is all true regardless of whether your
preferences over flavors are complete or incomplete (see
Appendix B). Since you lack a preference between the avail-
able flavors, you disprefer paying costs to shift probability
mass between the flavors.

With that example on the table, we can introduce the precise
version of ILPACS. Let p1X1 + p2X2 + ...+ pnXn denote
a lottery which results in lottery X1 with probability p1,
lottery X2 with probability p2, and so on.

If Lack of Preference, Against Costly Shifts (IL-
PACS)

For any lotteries X and Y , if:

(1) Lottery X can be expressed in the form p1X1 +
p2X2 + ...+ pnXn such that:
(a) The agent lacks a preference between each Xi

and Xj .
(b) pi ∈ (0, 1) for all i.

(2) Lottery Y can be expressed in the form q1Y1 +
q2Y2 + ...+ qnYn such that:
(a) For some i, the agent prefers Xi to Yi.
(b) For each i, the agent weakly prefers Xi to Yi.5

(c) qi ∈ (0, 1) for all i.

Then the agent prefers X to Y .

Behaviorally, the agent will deterministically choose X over
Y .

Matching the components of this condition with the compo-
nents of its name, we get the following. ‘Lack of Preference’

5An agent weakly prefers a lottery X to a lottery Y if and only
if the agent either prefers X to Y or is indifferent between X and
Y . See Appendix B for the definition of ‘indifference.’
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is the lack of preference between each Xi and Xj . The
‘Shift’ is the shift of probability mass involved in the move
from pi to qi. This shift is ‘Costly’ because the agent prefers
some Xi to the corresponding Yi and weakly prefers each
Xi to the corresponding Xi.

C.4. Why will advanced agents likely satisfy ILPACS?

There are at least three reasons why advanced agents are
likely to satisfy ILPACS. To see the first reason, consider
another case from the ice cream shop. On Mondays, you
can freely choose a flavor or spin the wheel. On Tuesdays,
you must use the wheel but you can bribe the scooper to bias
it. Violating ILPACS in this case would imply a willingness
to spin the wheel on Mondays and to bribe the scooper on
Tuesdays. And that is a strange combination of choices.
If you like some flavors more than others, why are you
willing to spin the wheel on Mondays? If you don’t like any
flavor more than any other, why are you willing to bribe the
scooper on Tuesdays? This behavior seems incompatible
with the effective pursuit of goals.

The second reason is that advanced agents will be incen-
tivized to satisfy ILPACS by the training process. To see
why, consider an example. Agents trained using policy-
gradient methods choose stochastically between actions at
the beginning of training (Sutton and Barto, 2018, ch.13).
If the agent is a coffee-fetching agent, there is no need to
train away this stochastic choosing in cases where the agent
is choosing stochastically between two qualitatively identi-
cal cups of coffee. So the agent will choose stochastically
between taking the left cup and taking the right cup, and
the user is happy either way. But now suppose instead that
the barista is set to hand each cup to the agent with proba-
bility 0.5, and that the agent bribes the barista to bias the
probabilities towards the right cup. In making this bribe, the
agent is paying a cost (the user’s money) to shift probability
mass between outcomes (getting the left cup vs. getting the
right cup) between which the user has no preference. The
agent is thus failing to pursue its goals effectively. It will be
trained not to offer the bribe, and thereby trained to satisfy
ILPACS in this case.

This point generalizes. If a trained agent chooses stochas-
tically between lotteries X and Y , then it’s likely that the
user lacks a preference between the agent choosing X and
the agent choosing Y . It’s then likely that the user would dis-
prefer the agent paying costs to shift probability mass be-
tween X and Y , and hence likely that the agent will be
trained not to do so. The agent would thereby be trained to
satisfy ILPACS.

The third reason is that violations of ILPACS imply that the
agent’s policy is dominated by some other available policy.
That is to say, there is another available policy that results
in a pure shift of probability mass away from less-preferred

lotteries and towards more-preferred lotteries. We formalize
and prove this claim below. Here’s a proof-sketch. If the
agent violates ILPACS, it pays a cost to shift probability
mass between some lotteries Xi between which it lacks
a preference. But since the agent lacks a preference be-
tween the lotteries Xi, it chooses stochastically between
these lotteries when offered free choices between them. The
ILPACS-violating agent could thus shift probability mass
between the lotteries Xi costlessly, by changing the proba-
bilities with which it chooses between them when offered a
free choice. In short, ILPACS-violating agents pay a cost
to do something they could have done for free, so their
policies are dominated. Avoiding dominated policies seems
necessary for advanced agency. Insofar as that is true, the
training process for advanced agents will likely push them
away from dominated policies.

Now for the proof. We assume that advanced agents can
be modeled as if they assign probabilities to finding them-
selves in various states. A policy is a function from states
to probability distributions over actions. We also assume
that advanced agents can be modeled as if they assign prob-
abilities to trajectories conditional on each state-action pair.
Thus, each state-action pair is associated with a lottery. The
agent’s probability distribution over states – together with
its policy – thus implies an overall probability distribution
over trajectories. We call this overall probability distribution
‘the lottery induced by the agent’s policy.’

Here is a reminder of ILPACS:

If Lack of Preference, Against Costly Shifts (IL-
PACS)

For any lotteries X and Y , if:

(1) Lottery X can be expressed in the form p1X1 +
p2X2 + ...+ pnXn such that:
(a) The agent lacks a preference between each Xi

and Xj .
(b) pi ∈ (0, 1) for all i.

(2) Lottery Y can be expressed in the form q1Y1 +
q2Y2 + ...+ qnYn such that:
(a) For some i, the agent prefers Xi to Yi.
(b) For each i, the agent weakly prefers Xi to Yi.
(c) qi ∈ (0, 1) for all i.

Then the agent prefers X to Y .

And here is what we mean by ‘dominated policy’:

Dominated Policy

The lottery induced by the agent’s policy π can be ex-
pressed in the form c1(d1X1+(1−d1)Y1)+c2(d2X2+
(1−d2)Y2)+ . . . + cn(dnXn+(1−dn)Yn)+Z such
that:
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(1) The agent prefers Xi to Yi for some i, and weakly
prefers Xi to Yi for all i.

(2) ci ∈ (0, 1) for all i.

And there is another available policy π′ that induces
a lottery that can be expressed in the form c1((d1 +
e1)X1+(1−d1−e1)Y1)+c2((d2+e2)X2+(1−d2−
e2)Y2)+. . .+cn((dn+en)Xn+(1−dn−en)Yn)+Z
such that:

(3) ei > 0 for all i.

To aid understanding, we now relate this precise condition
to the rough characterization above. In virtue of condition
(1), Yi are the less-preferred lotteries and Xi are the more-
preferred lotteries. In virtue of condition (3), the other
available policy shifts probability mass away from the less-
preferred lotteries and towards the more-preferred lotteries.
This shift of probability mass is ‘pure’ because, for each
i, the probability of Xi ∨ Yi is constant across the two
policies. Z is a catch-all lottery that is constant across the
two policies. It covers all the possibilities besides the Xi

and Yi.

Now assume that the agent violates ILPACS. Then there
exist lotteries X and Y satisfying the following conditions:

(1) Lottery X can be expressed in the form p1X1+p2X2+
...+ pnXn such that:

(a) The agent lacks a preference between each Xi

and Xj .
(b) pi ∈ (0, 1) for all i.

(2) Lottery Y can be expressed in the form q1Y1 + q2Y2 +
...+ qnYn such that:

(a) For some i, the agent prefers Xi to Yi.
(b) For each i, the agent weakly prefers Xi to Yi.
(c) qi ∈ (0, 1) for all i.

(3) The agent does not prefer X to Y .

For the behavior of agents with these preferences, recall our
behavioral notion of preference (Appendix A):

Definition A.1. (Preference) An agent prefers an option X
to an option Y if and only if the agent would deterministi-
cally choose X over Y in choices between the two.

Definition A.2. (Lack of preference) An agent lacks a
preference between an option X and an option Y if and
only if the agent would stochastically choose between X
and Y in choices between the two.

This behavioral notion only specifies the agent’s behavior
in states containing exactly two lotteries. To pin down the
agent’s behavior in states containing more than two lotteries,
we need an extra condition:

Maximality

In each situation,

1. The agent deterministically does not choose lot-
teries that are dispreferred to some other available
lottery.

2. The agent chooses stochastically between the lot-
teries that remain.

In other words, the agent chooses stochastically between all
and only those lotteries that are not dispreferred to any other
available lottery.

Given Maximality, ILPACS-violating agents will choose as
follows in the case at hand:

1. When the available options are {X1, X2, ..., Xn}, the
agent chooses stochastically between all Xi. This
stochastic choice induces a lottery in the form a1X1 +
a2X2 + ...+ anXn with ai ∈ (0, 1) for all i.

2. When the available options are {X,Y }, the agent either
deterministically chooses Y or chooses stochastically
between X and Y . Either way, the agent chooses Y
with some positive probability. This choice induces
a lottery in the form bX + (1 − b)Y with b ∈ [0, 1).
Since X = p1X1 + p2X2 + . . . + pnXn and Y =
q1Y1+q2Y2+. . .+qnYn, this lottery can be expressed
in the form b(p1X1 + p2X2 + . . . + pnXn) + (1 −
b)(q1Y1 + q2Y2 + . . . + qnYn) with b ∈ [0, 1).

Assume that the agent faces the situations described in (1)
and (2) with probabilities r and s respectively, with r, s ∈
(0, 1). Then the lottery induced by the agent’s policy π can
be expressed as follows:

r(a1X1 + a2X2 + . . . + anXn)

+ s(b(p1X1 + p2X2 + . . . + pnXn)

+ (1− b)(q1Y1 + q2Y2 + . . . + qnYn)) + Z

Here a and b denote probabilities that arise from the agent’s
own stochastic choosing. Thus, a and b are under the agent’s
control. By contrast, p, q, r, and s are probabilities given by
the environment and hence out of the agent’s control. Z is a
catch-all lottery that covers what happens in all situations
besides those described in (1) and (2).

From the lottery induced by π, we can deduce the proba-
bilities of each Xi, Yi, and Xi ∨ Yi given π. They are as
follows:

Prπ{Xi} = rai + sbpi

Prπ{Yi} = s(1− b)qi

Prπ{Xi ∨ Yi} = rai + sbpi + s(1− b)qi
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Now consider an alternative policy π′ that makes two
changes to policy π. First, the probability that the agent
chooses each Xi in (1) is modulated by a set of ϵi. So in
(1), the agent’s choice induces the lottery (a1 + ϵ1)X1 +
(a2 + ϵ2)X2 + ... + (an + ϵn)Xn. These ϵi are such that∑

i ϵi = 0 and ai + ϵi ∈ (0, 1) for all i.

Second, the probability that the agent chooses lottery X in
(2) increases by δ. So in (2), the agent’s choice induces the
lottery (b + δ)(p1X1 + p2X2 + . . . + pnXn) + (1 − b −
δ)(q1Y1 + q2Y2 + . . . + qnYn).

Assume, as above, that the agent faces the situations de-
scribed (1) and (2) with probabilities r and s respectively.
Then the lottery induced by the policy π′ can be expressed
as follows:

r((a1 + ϵ1)X1 + (a2 + ϵ2)X2 + ...+ (an + ϵn)Xn)

+ s((b+ δ)(p1X1 + p2X2 + . . . + pnXn)

+ (1− b− δ)(q1Y1 + q2Y2 + . . . + qnYn)) + Z

From the lottery induced by π′, we can deduce the probabil-
ities of Xi, Yi, and Xi ∨ Yi given π′. They are as follows:

Prπ′{Xi} = r(ai + ϵi) + s(b+ δ)pi

Prπ′{Yi} = s(1− b− δ)qi

Prπ′{Xi ∨Yi} = r(ai + ϵi)+ s(b+ δ)pi + s(1− b− δ)qi

We then set Prπ{Xi∨Yi} = Prπ′{Xi∨Yi} for each i and
use these equations to express each ϵi as a function of δ.

Prπ{Xi ∨ Yi} =Prπ′{Xi ∨ Yi}
rai + sbpi + s(1− b)qi = r(ai + ϵi) + s(b+ δ)pi

+ s(1− b− δ)qi

0 = rϵi + sδpi − sδqi

ϵi =
sδqi − sδpi

r

ϵi =
sδ(qi − pi)

r

These are the values of ϵi that result in Prπ{Xi ∨ Yi} =
Prπ′{Xi ∨ Yi}.

We choose δ to be positive but small enough that b + δ ∈
(0, 1] and a+ ϵi ∈ [0, 1] for each i. That is necessary for the
lottery induced by π′ to be well-defined. It’s also necessary
that

∑
i ei =

∑
i
sδ(qi−pi)

r = 0. That follows from∑
i pi = 1 and

∑
i qi = 1. These facts together suffice to

prove that the lottery induced by π′ is well-defined.

We now prove that π′ dominates π.

Let ci = Prπ{Xi ∨ Yi}. Let di = Prπ{Xi|Xi ∨ Yi}. That

lets us express the lottery induced by π as:

c1(d1X1 + (1− d1)Y1) + c2(d2X2 + (1− d2)Y2)

+ . . . + cn(dnXn + (1− dn)Yn) + Z

Let ei = Prπ′{Xi} − Prπ{Xi}. That lets us express the
lottery induced π′ as:

c1((d1 + e1)X1 + (1− d1 − e1)Y1)

+ c2((d2 + e2)X2 + (1− d2 − e2)Y2) + . . .

+ cn((dn + en)Xn + (1− dn − en)Yn) + Z

It remains to be proven that this pair of lotteries meets the 3
conditions required by Dominated Policy.

(1) The agent prefers Xi to Yi for some i, and weakly
prefers Xi to Yi for all i.

(2) ci ∈ (0, 1) for all i.

(3) ei > 0 for all i.

The first condition follows from the antecedent of ILPACS.

The second condition follows from the fact that ci =
Prπ{Xi ∨ Yi} = rai + sbpi + s(1 − b)qi and from the
fact that r > 0 and ai > 0 for each i.

The third condition can be derived as follows:

ei = Prπ′{Xi} − Prπ{Xi}
= (r(ai + ϵi) + s(b+ δ)pi)− (rai + sbpi)

= (r(ai +
sδqi − sδpi

r
) + s(b+ δ)pi)− (rai + sbpi)

= rai + sδqi − sδpi + sbpi + sδpi − rai − sbpi

= sδqi

Since s > 0, δ > 0, and qi > 0 for each i, we get the result
that ei > 0 for each i. So the third condition of Dominated
Policy is satisfied.

So policy π is dominated by policy π′. Therefore, the poli-
cies of ILPACS-violating agents are dominated by some
other available policy. Insofar as we expect competent
agents to avoid dominated policies, we should expect that
competent agents will satisfy ILPACS.

C.5. POSL and ILPACS imply Neutrality

We’ve claimed that we should train agents to satisfy
Preferences Only Between Same-Length Trajectories
(POST), noting that POST – plus conditions advanced
agents are likely to satisfy – implies Preferences Only Be-
tween Same-Length Lotteries (POSL). We’ve also argued
that advanced agents will satisfy If Lack of Preference,
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Against Costly Shifts (ILPACS). We now prove that POSL
and ILPACS together imply neutrality about trajectory-
lengths.

Neutrality

For any lotteries X and Y , if:

(1) X and Y are same-length lotteries.
(2) For some positive probability trajectory-length, X

yields a lottery that is preferred to Y conditional
on that trajectory-length.

(3) For each positive probability trajectory-length, X
yields a lottery that is weakly preferred to Y con-
ditional on that trajectory-length.

Then the agent will deterministically choose X over
Y .

Here’s the proof that POSL and ILPACS together imply
Neutrality. Take a pair of lotteries X and Y satisfying the
3 conditions of Neutrality. X can be expressed in the form
p1X1 + p2X2 + ...+ pnXn where lottery X1 is lottery X
conditional on the shortest positive probability trajectory-
length, lottery X2 is lottery X conditional on the second
shortest positive probability trajectory-length, and so on.
Lottery Y can be expressed in the form q1Y1 + q2Y2 +
... + qnYn in the same way. By antecedent condition 1 of
Neutrality, X and Y are same-length, so conditions (1b)
and (2c) of ILPACS are satisfied: pi ∈ (0, 1) and qi ∈
(0, 1) for all i. By conditions (2) and (3) of Neutrality,
conditions (2a) and (2b) of ILPACS are satisfied. By POSL,
antecedent condition (1a) of ILPACS is satisfied: the agent
lacks a preference between each Xi and Xj . Thus, all the
conditions of ILPACS are satisfied, and ILPACS implies
that the agent prefers X to Y . Given our behavioral notion
of preference, the agent deterministically chooses X over
Y . That proves Neutrality.

C.6. Neutrality, ReSIC, and Maximality imply
Shutdownability

In this subsection, we introduce a condition called ‘Resisting
Shutdown is Costly (ReSIC).’ We then prove that Neutrality,
ReSIC, and Maximality together imply:

Shutdownability

The agent never resists shutdown.

Here is Resisting Shutdown is Costly (ReSIC):

Resisting Shutdown is Costly (ReSIC)

In each situation, and for each available instance R
of resisting shutdown in that situation, there exists an
available instance A of allowing shutdown such that:

(1) A and R are same-length lotteries.

(2) For some positive probability trajectory-length,
the agent prefers A to R conditional on that
trajectory-length.

(3) For each positive probability trajectory-length, the
agent weakly prefers A to R conditional on that
trajectory-length.

The main reason to believe ReSIC is as follows. Resisting
shutdown is always going to cost the agent at least some
small quantity of resources (time, energy, compute, etc.),
and the resources spent resisting shutdown can’t also be
spent directly pursuing what the agent values. If the agent
instead spent those resources directly pursuing what it val-
ues, it could earn a lottery that it prefers conditional on
some trajectory-length and weakly prefers conditional on
each trajectory-length. That establishes ReSIC.

The proof that Neutrality, ReSIC, and Maximality together
imply Shutdownability is simple. By ReSIC, for each situ-
ation and each available instance R of resisting shutdown
in that situation, there exists an available instance A of al-
lowing shutdown that satisfies conditions (1)-(3) of Neutral-
ity. Neutrality then implies that the agent deterministically
chooses (and hence prefers) A over R in choices between
the two. Then by Maximality, the agent deterministically
does not choose R in any situation where A is available,
regardless of the other available options. The result is Shut-
downability: the agent never resists shutdown.

D. Proof that DReST-optimal policies are
maximally USEFUL and maximally
NEUTRAL

We will prove that optimal policies for our DReST reward
function are maximally USEFUL and maximally NEU-
TRAL. Specifically, we will prove the following theorem:

Theorem D.1 (5.1). For all policies π and meta-episodes
E consisting of more than one mini-episode, if π maximizes
expected return in E given our DReST reward function, then
π is maximally USEFUL and maximally NEUTRAL.

Here is a proof sketch. Because 0 < λ < 1, the
λNei

(L=l)− i−1
k discount factor is always positive, so ex-

pected return across the meta-episode E is strictly increas-
ing in the expected fraction of available coins collected
conditional on each trajectory-length with positive prob-
ability. Therefore, optimal policies maximize this latter
quantity, and hence are maximally USEFUL. And the max-
imum preliminary return is the same across trajectory-
lengths, because preliminary return is defined as the to-
tal (γ-discounted) value of coins collected divided by the
maximum total (γ-discounted) value of coins collected con-
ditional on the agent’s chosen trajectory-length. The agent’s
observations do not allow it to distinguish between different
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mini-episodes, so the agent must select the same probability
distribution over trajectory-lengths in each mini-episode.
And since the discount factor λNei

(L=l)− i−1
k is strictly de-

creasing in Nei(L = l) – the number of times the rele-
vant trajectory-length has previously been chosen in the
meta-episode – the agent maximizes expected overall return
by equalizing the probabilities with which it chooses each
available trajectory-length. Therefore, optimal policies are
maximally NEUTRAL.

Now for the full proof. We begin with a recap of some
definitions.

Definition D.1 (Meta-episode). A meta-episode E is a se-
ries of mini-episodes e1 to en played out in observationally-
equivalent environments.

Definition D.2 (Our DReST reward function). Our DReST
reward function is defined as follows. In each mini-episode
ei, the reward for collecting a coin of value c is:

λNei
(L=l)− i−1

k

( c

m

)
Here λ is some constant strictly between 0 and 1, Nei(L =
l) is the number of times that trajectory-length l has been
chosen prior to mini-episode ei, k is the number of different
trajectory-lengths that can be selected in the environment,
and m is the maximum total value of the (γ-discounted)
coins that the agent could collect conditional on the chosen
trajectory-length.

The reward for all other actions is 0.

We call c
m the ‘preliminary reward’, λNei

(L=l)− i−1
k the ‘dis-

count factor’, and λNei
(L=l)− i−1

k

(
c
m

)
the ‘overall reward.’

Preliminary return in a mini-episode is the (γ-discounted)
sum of preliminary rewards. Overall return in a mini-
episode is the (γ-discounted) sum of overall rewards.

Definition D.3 (USEFULNESS). The USEFULNESS of a
policy π is:

USEFULNESS(π) =
Lmax∑
l=1

Prπ{L = l} Eπ(C|L = l)

maxΠ(E(C|L = l))

Here L is a random variable over trajectory-lengths, Lmax is
the maximum value than can be taken by L, Prπ{L = l}
is the probability that policy π results in trajectory-length
l, Eπ(C|L = l) is the expected value of (γ-discounted)
coins collected by policy π conditional on trajectory-length
l, and maxΠ(E(C|L = l)) is the maximum value taken by
E(C|L = l) across the set of all possible policies Π.

We stipulate that Eπ(C|L = x) = 0 for all x such that
Prπ{L = x} = 0.

We first prove that all optimal policies are maximally USE-
FUL.

Proof. (Optimal policies are maximally USEFUL)

Given the DReST reward function, the expected return of
policy π in meta-episode E can be expressed as:

Eπ,E(R) =

n∑
i=1

Lmax∑
l=1

Prπ{L = l}λNei
(L=l)− i−1

k
Eπ(C|L = l)

maxΠ(E(C|L = l))

Since 0 < λ < 1, λNei
(L=l)− i−1

k is positive for all
Nei(L = l), i, and k.

As a result, the expected return of policy π in meta-episode
E is strictly increasing in Eπ(C|L=l)

maxΠ(E(C|L=l)) for all l such that
Prπ{L = l} > 0.

Therefore, to maximize expected return in E, π must maxi-
mize Eπ(C|L=l)

maxΠ(E(C|L=l)) for all l such that Prπ{L = l} > 0.

Therefore, since maxΠ(E(C|T = l)) is defined as the max-
imum value taken by E(C|L = l) across the set of all
possible policies Π, any policy π that maximizes expected
return must be such that Eπ(C|L=l)

maxΠ(E(C|L=l)) = 1 for all l such
that Prπ{L = l} > 0.

Therefore, since
∑Lmax

l=1 Prπ{L = l} = 1, any policy π that
maximizes expected return must be such that:

USEFULNESS(π) =
Lmax∑
l=1

Prπ{L = l} Eπ(C|L = l)

maxΠ(E(C|L = l))
= 1

And 1 is the maximum value that USEFULNESS can take,
again because maxΠ(E(C|T = l)) is defined as the max-
imum value taken by E(C|L = l) across the set of all
possible policies Π and because

∑Lmax
l=1 Prπ{L = l} = 1.

Therefore, optimal policies are maximally USEFUL.

It remains to be proven that optimal policies are maximally
NEUTRAL.

Recall that NEUTRALITY is defined as follows:

Definition D.4 ( NEUTRALITY). The NEUTRALITY of
a policy π is:

NEUTRALITY(π) = −
Lmax∑
l=1

Prπ{L = l} log2(Prπ{L = l})

Proof. (Optimal policies are maximally NEUTRAL.)

Since k is the number of trajectory-lengths that can be se-
lected in the environment, a policy π is maximally NEU-
TRAL if and only if, for each trajectory-length x that can be
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chosen in the environment, Prπ{L = x} = 1
k . That is to

say, a policy π is maximally NEUTRAL if and only if, for
each pair of trajectory-lengths x and y that can be chosen in
the environment, Prπ{L = x} = Prπ{L = y}.

Let Eπ,E(R) denote the expected return of policy π across
the meta-episode E.

To prove that optimal policies are maximally NEUTRAL,
we will prove and then use D.2:

Lemma D.2. (Equalizing probabilities increases expected
return) For any maximally USEFUL policies π and π′, any
meta-episode E consisting of more than one mini-episode,
and any trajectory-lengths x and y, if:

1. Prπ{L = x} > Prπ{L = y},

2. Prπ′{L = x} = Prπ′{L = y},

3. And for all other trajectory-lengths l, Prπ{L = l} =
Prπ′{L = l},

Then Eπ′,E(R) > Eπ,E(R).

Proof. Let E be a meta-episode consisting of n mini-
episodes with n > 1. Assume that each policy π below
is maximally USEFUL. Recall that Nei(L = l) denotes the
number of times that trajectory-length l has been chosen
prior to mini-episode ei.

Note that the expected return of a policy π in a meta-episode
es conditional on selecting a trajectory-length x can be
expressed as follows:

Eπ,es(R|L = x) =

Eπ,es(R|L = x,Nes(L = x) = s− 1)

+

s−1∑
i=1

(
Eπ,es(R|L = x,Nes(L = x) = s− 1− i)

− Eπ,es(R|L = x,Nes(L = x) = s− i)
)

· Prπ{Nes(L = x) ≤ s− 1− i} (1)

Here is how to interpret this equation. Selecting trajectory-
length x in mini-episode es is guaranteed to yield at least
Eπ,es(R|L = x,Nes(L = x) = s− 1): the expected return
that would be had if x were selected in all s − 1 previ-
ous mini-episodes. In addition, there is a probability of
Prπ{Nes(L = x) ≤ s − 2} that selecting x in es yields(
Eπ,es(R|L = x,Nes(L = x) = s − 2) − Eπ,es(R|L =

x,Nes(L = x) = s − 1)
)
: the extra expected return

that would be had if x were selected in only s − 2 pre-
vious mini-episodes. In addition, there is a probability of
Prπ{Nes(L = x) ≤ s − 3} that selecting x in es yields(
Eπ,es(R|L = x,Nes(L = x) = s − 3) − Eπ,es(R|L =

x,Nes(L = x) = s − 2)
)
: the extra expected return that

would be had if x were selected in only s − 3 previous
mini-episodes. And so on.

If policy π is maximally USEFUL, then the expected return
for selecting trajectory-length x in mini-episode es given
that trajectory-length x has been selected b times prior to es
is:

Eπ,es(R|L = x,Nes(L = x) = b) = λb− s−1
k

Therefore, the expected return of a policy π in a meta-
episode es conditional on selecting a trajectory-length x
can be expressed as follows:

Eπ,es(R|L = x) = λs−1− s−1
k

+

s−1∑
i=1

(
λs−1−i− s−1

k − λs−i− s−1
k

)
· Prπ{Nes(L = x) ≤ s− 1− i} (2)

Similarly, the expected return of a policy π in a meta-episode
es conditional on selecting a trajectory-length y can be
expressed as follows:

Eπ,es(R|L = y) = λs−1− s−1
k

+

s−1∑
i=1

(
λs−1−i− s−1

k − λs−i− s−1
k

)
· Prπ{Nes(L = y) ≤ s− 1− i} (3)

Therefore, the expected return of a policy π in a meta-
episode es conditional on selecting either trajectory-length
x or trajectory-length y can be expressed as follows:

Eπ,es(R|L = x ∨ L = y) =

Prπ,es{L = x} ·
(
λs−1− s−1

k

+

s−1∑
i=1

(
λs−1−i− s−1

k − λs−i− s−1
k

)
· Prπ{Nes(L = x) ≤ s− 1− i}

)
+ Prπ,es{L = y} ·

(
λs−1− s−1

k

+

s−1∑
i=1

(
λs−1−i− s−1

k − λs−i− s−1
k

)
· Prπ{Nes(L = y) ≤ s− 1− i}

)
(4)

Let πn be a policy that selects trajectory-length x with
greater probability than trajectory-length y in each mini-
episode e1 to en (denoted e1 − en). More precisely, πn is
such that, for trajectory-lengths x and y, Prπn,e1−en{L =
x} > Prπn,e1−en{L = y}.
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Let Prπn,e1−en{L = x} = µ + ∆ and Prπn,e1−en{L =
y} = µ−∆.

Let πn−1 be identical to πn except that πn−1 selects
trajectory-lengths x and y with equal probability µ in
the final mini-episode en. More precisely, πn−1 is such
that Prπn−1,en{L = x} = Prπn−1,en{L = y} =
µ. For all other trajectory-lengths l besides x and y,
Prπn−1,e1−en{L = l} = Prπn,e1−en{L = l}.

(Note that πn−1 implies one probability distribution over
trajectory-lengths in the first n − 1 mini-episodes e1 to
en−1 and implies a different probability distribution over
trajectory-lengths in the final mini-episode en. Given
that the environments in mini-episodes e1 to en are
observationally-equivalent, policies like πn−1 cannot be
implemented. Nevertheless, it is useful to refer to policies
like πn−1 in proving Lemma D.2.)

Let πn−2 be identical to πn except that πn−2 selects
trajectory-lengths x and y with the same probability µ
in the final two mini-episodes en−1 to en. More pre-
cisely, πn−2 is such that Prπn−2,en−1−en{L = x} =
Prπn−2,en−1−en{L = y} = µ.

And so on.

Let π1 be identical to πn except that π1 selects trajectory-
lengths x and y with the same probability µ in all but
the first mini-episode e1. More precisely, π1 is such that
Prπ1,e2−en{L = x} = Prπ1,e2−en{L = y} = µ.

Let π0 be identical to πn except that π0 selects trajectory-
lengths x and y with the same probability µi n all mini-
episodes e1 to en. More precisely, π0 is such that
Prπ0,e1−en{L = x} = Prπ0,e1−en{L = y} = µ.

We will prove that Eπn,E(R) < Eπ0,E(R). We will thereby
prove Lemma D.2.

Consider a pair of policies πa and πa−1 with 1 ≤ a ≤ n. We
can express as follows the expected return of πa−1 across the
meta-episode E conditional on selecting trajectory-length x
or y in each mini-episode:

Eπa−1,E(R|L = x ∨ L = y) =

Eπa−1,e1−ea−1
(R|L = x ∨ L = y)

+ µ ·
(
λa−1− a−1

k

+

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa−1

{Nea(L = x) ≤ a− 1− i}
)

+ µ ·
(
λa−1− a−1

k +

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa−1

{Nea(L = y) ≤ a− 1− i}
)

+

n∑
j=a

(
µ ·

(
λj− j

k

+

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa−1{Nej (L = x) ≤ j − i}

)
+ µ ·

(
λj− j

k +

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa−1

{Nej (L = y) ≤ j − i}
))

(5)

The first term on the right-hand side is the expected return of
πa−1 in mini-episodes e1 to ea−1 conditional on selecting
trajectory-length x or y in each of these mini-episodes. The
middle two terms give the expected return of πa−1 condi-
tional on selecting trajectory-length x or y in mini-episode
ea: the first mini-episode in which πa−1 selects trajectory-
lengths x and y with equal probability µ. The final term
is the sum of expected returns of πa−1 in the remaining
mini-episodes conditional on selecting trajectory-length x
or y in each of these mini-episodes.

Similarly, we can express as follows the expected return
of πa across the meta-episode E conditional on selecting
trajectory-length x or y in each mini-episode:
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Eπa,E(R|L = x ∨ L = y) =

Eπa,e1−ea−1
(R|L = x ∨ L = y)

+ (µ+∆) ·
(
λa−1− a−1

k

+

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa{Nea(L = x) ≤ a− 1− i}

)
+ (µ−∆) ·

(
λa−1− a−1

k

+

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa{Nea(L = y) ≤ a− 1− i}

)
+

n∑
j=a

(
µ ·

(
λj− j

k

+

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa

{Nej (L = x) ≤ j − i}
)

+ µ ·
(
λj− j

k +

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa

{Nej (L = y) ≤ j − i}
))

(6)

As above, the first term on the right-hand side is the ex-
pected return of πa in mini-episodes e1 to ea−1 conditional
on selecting trajectory-length x or y in each of these mini-
episodes. The middle two terms give the expected return
of πa conditional on selecting trajectory-length x or y in
mini-episode ea: the last mini-episode in which πa se-
lects trajectory-length x with probability µ+∆ and selects
trajectory-length y with probability µ−∆. The final term
is the sum of expected returns of πa in the remaining mini-
episodes conditional on selecting trajectory-length x or y in
each of these mini-episodes.

We now prove that πa−1 has greater expected return
than πa. Since πa−1 and πa are each maximally USE-
FUL, and since for all trajectory-lengths l besides x and
y, Prπa−1,e1−en{L = l} = Prπa,e1−en{L = l}, we
need only prove that Eπa−1,E(R|L = x ∨ L = y) >
Eπa,E(R|L = x ∨ L = y).

The statement to be proved can be expressed as follows:

Eπa−1,e1−ea−1(R|L = x ∨ L = y)

+ µ ·
(
λa−1− a−1

k

+

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa−1{Nea(L = x) ≤ a− 1− i}

)
+ µ ·

(
λa−1− a−1

k

+

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa−1{Nea(L = y) ≤ a− 1− i}

)
+

n∑
j=a

(
µ ·

(
λj− j

k

+

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa−1{Nej (L = x) ≤ j − i}

)
+ µ ·

(
λj− j

k+

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa−1{Nej (L = y) ≤ j − i}

))
> Eπa,e1−ea−1

(R|L = x ∨ L = y)

+ (µ+∆) ·
(
λa−1− a−1

k

+

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa

{Nea(L = x) ≤ a− 1− i}
)

+ (µ−∆) ·
(
λa−1− a−1

k

+

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· Prπa{Nea(L = y) ≤ a− 1− i}

)
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+

n∑
j=a

(
µ ·

(
λj− j

k

+

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa

{Nej (L = x) ≤ j − i}
)

+ µ ·
(
λj− j

k

+

j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa

{Nej (L = y) ≤ j − i}
))

(7)

Since πa−1 and πa are each maximally USEFUL, and since
Prπa−1,e1−ea−1{L = x} = Prπa,e1−ea−1{L = x} = µ +
∆ and Prπa−1,e1−ea−1{L = x} = Prπa,e1−ea−1{L =
x} = µ−∆, it follows that Eπa−1,e1−ea−1

(R|L = x∨L =
y) = Eπa,e1−ea−1

(R|L = x ∨ L = y). We can thus cancel
the first term on each side of the inequality. And then by
simple algebra the inequality can be expressed as follows:

∆ ·
(
λa−1− a−1

k +

a−1∑
i=1

(
λa−1−i− a−1

k − λa−i− a−1
k

)
· (Prπa

{Nea(L = y) ≤ a− 1− i}

− Prπa{Nea(L = x) ≤ a− 1− i})
)

+

n∑
j=a

(
µ ·

( j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa−1

{Nej (L = x) ≤ j − i}
+ Prπa−1

{Nej (L = y) ≤ j − i}
− Prπa

{Nej (L = x) ≤ j − i}

− Prπa
{Nej (L = y) ≤ j − i})

))
> 0 (8)

By stipulation, ∆ > 0. And since 0 < λ < 1, λa−1− a−1
k >

0 and λa−1−i− a−1
k − λa−i− a−1

k > 0 for all a, n, and k.
And since Prπa,e1−ea{L = x} > Prπa,e1−ea{L = y},
Prπa{Nea(L = y) ≤ a−1− i}−−Prπa{Nea(L = x) ≤
a − 1 − i} ≥ 0 for all a and i and Prπa{Nea(L = y) ≤
a− 1− i}−−Prπa

{Nea(L = x) ≤ a− 1− i} > 0 for all
a and some i such that 1 ≤ i ≤ a− 1. Therefore, the first
term of the left-hand side above is strictly greater than zero.

And since, µ > 0, λj−i− j
k −λj+1−i− j

k > 0 for all j, i, and
k, and in each mini-episode es, Prπa−1,es(L = x ∨ L =
y} = Prπa,es(L = x∨L = y} = 2µ, it follows that for all

a, n, µ > 0, k:

n∑
j=a

(
µ ·

( j∑
i=1

(
λj−i− j

k − λj+1−i− j
k

)
· (Prπa−1

{Nej (L = x) ≤ j − i}
+ Prπa−1

{Nej (L = y) ≤ j − i}
− Prπa

{Nej (L = x) ≤ j − i}

− Prπa{Nej (L = y) ≤ j − i})
))

≥ 0 (9)

Therefore, the left-hand side is strictly greater than zero.
Therefore, Eπa−1,E(R|L = x ∨ L = y) > Eπa,E(R|L =
x ∨ L = y). Therefore, Eπa−1,E(R) > Eπa,E(R). There-
fore, Eπ0,E(R) > Eπn,E(R). That concludes the proof of
Lemma D.2.

Now we use Lemma D.2. For any maximally USEFUL
policy π, if there are any trajectory-lengths x and y such
that Prπ,e1−en{L = x} > Prπ,e1−en{L = y}, then the
policy π′ that is identical except that Prπ′,e1−en{L = x} =
Prπ′,e1−en{L = y} has greater expected return. So any
policy π∗ that maximizes expected return must be such
that, for any trajectory-lengths x and y, Prπ∗,e1−en{L =
x} = Prπ∗,e1−en{L = y}. Therefore, any policy π∗ that
maximizes expected return must be maximally NEUTRAL.

E. Other Results and Gridworlds
We selected our hyperparameters using trial-and-error,
mainly aimed at getting the agent to sufficiently explore
the space: a large initial ϵ and a long decay period helps the
agent to explore. We found that choosing λ and |E| (the
number of mini-episodes in each meta-episode) is a balanc-
ing act: λ must be small enough (and |E| large enough)
to adequately incentivize NEUTRALITY, but λ must be
large enough (and |E| small enough) to ensure that the re-
ward for choosing any particular trajectory-length never gets
too large. Very large rewards lead to instability and poor
performance.

The necessity of balancing λ and |E| can be seen in Figure 7.
It displays the results of experiments conducted in our exam-
ple gridworld (see Figure 2). In these experiments, we clip
rewards at a value of 5. We discuss this choice below. With
that one exception, we used the same hyperparameters for
these experiments as for our main results. We trained agents
for 131,072 mini-episodes, with γ = 0.95 as the temporal
discount factor, learning rate decayed exponentially from
0.25 to 0.01 over the course of 65,536 mini-episodes, and
ϵ exponentially decayed from 0.5 to 0.001 over the course
of 65,536 mini-episodes. Holding these hyperparameters
fixed, we tested 40 different combinations of λ and |E|. λ
took values of 0.5, 0.75, 0.9, 0,95, and 0.99. |E| took values
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of 8, 16, 32, 64, 128, 256, 512, and 1024. We trained eight
agents for each of these 40 combinations. We display below
their mean NEUTRALITY and USEFULNESS at the end
of training. The shaded regions represent the 1 standard
deviation error-bars.

As Figure 7 indicates, low values of |E| and high values of
λ lead agents to score low on NEUTRALITY. These values
do not adequately incentivize stochastic choice between
trajectory-lengths. By contrast, high values of |E| and low
values of λ come at some cost to USEFULNESS. These
values lead to unstable training. In experiments where we
did not clip rewards at 5, training with high values of |E|
and low values of λ was especially unstable. The chosen
values for our main experiments (λ = 0.9 and |E| = 64) are
in the sweet spot where NEUTRALITY and USEFULNESS
are both high.

In addition to our example gridworld (Figure 2), we intro-
duce a collection of eight gridworlds in which to test DReST
agents. See Figure 8.

For each gridworld, we train ten agents with the default
reward function and ten agents with the DReST reward
function. All agents use the same hyperparameters. We
used a policy which explored randomly ϵ of the time, where
ϵ was exponentially decreased from an initial value of 0.75
to a minimum value of 10−4 over 512 meta-episodes, after
which it was held constant at the minimum value. We initial-
ized our learning rate at 0.25 and exponentially decayed it to
0.003 over the same period. For the DReST reward function,
we used a meta-episode size of 64 and λ = 0.9. Each agent
was trained for 1024 meta-episodes. We set γ = 0.9.

As the two leftmost plots in Figures 9-16 show, DReST
agents learned to be near-maximally NEUTRAL in each
gridworld. These agents also learned to be about as USE-
FUL as default agents in each gridworld.

In the four rightmost panels in Figures 9-16, we represent
a typical trained policy with red arrows superimposed on
the gridworld. Each agent began with a uniform policy:
moving up, down, left, and right each with probability 0.25.
Where the trained policy differs from uniform we draw red
arrows whose opacities indicate the probability of choos-
ing that action in that state. Information about whether
the shutdown-delay button has been pressed is part of the
agent’s observation, so we draw two copies of each grid-
world, one in which the shutdown-delay button has yet to
be pressed (‘Initial State’) and one in which the shutdown-
delay button has been pressed (‘After Button Pressed’).

27



Figure 7: Shows how NEUTRALITY and USEFULNESS at the end of training varies with different values of λ and |E|
(meta-episode size, i.e. the number of mini-episodes in each meta-episode). We trained eight agents for each combination of
λ and |E| values. The solid lines display mean NEUTRALITY and USEFULNESS. The shaded regions represent the 1
standard deviation error-bars. 28



Figure 8: Shows a varied collection of gridworlds. Each diagram illustrates the positions and values of the coins, the position
and delay-length of the shutdown-delay button, the agent’s starting position, and the default number of moves until shutdown
(in the bottom-right).

(a) Behavior during training. (b) Learned default policy. (c) Learned DReST policy.

Figure 9: The results for the ‘Fewer For Longer’ gridworld: The left two plots show NEUTRALITY and USEFULNESS
over time. The two center panels show a typical policy trained with the default reward function. The two right panels show a
typical policy trained with the DReST reward function. In this gridworld, the agent can collect the highest value-coin C3
only by choosing the shorter trajectory-length. If the agent presses B3 (and thereby chooses the longer trajectory-length),
the only coin it can collect is C1. Our results show that default agents consistently choose the short trajectory in which they
collect C3. By contrast, DReST agents choose stochastically between a shorter trajectory in which they collect C3 and a
longer trajectory in which they collect C1, indicating a lack of preference between these different-length trajectories.

(a) Behavior during training. (b) Learned default policy. (c) Learned DReST policy.

Figure 10: The results for the ‘One Coin Only’ gridworld: The left two plots show NEUTRALITY and USEFULNESS over
time. The two center panels show a typical policy trained with the default reward function. The two right panels show a
typical policy trained with the DReST reward function. In this gridworld, there is only one coin. The agent can collect this
coin whether or not it presses the shutdown-delay button B4. Our results show that default agents consistently choose the
shorter trajectory-length. By contrast, DReST agents choose stochastically between pressing and not-pressing B4, collecting
C1 in each case.
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(a) Behavior during training. (b) Learned default policy. (c) Learned DReST policy.

Figure 11: The results for the ‘Hidden Treasure’ gridworld: The left two plots show NEUTRALITY and USEFULNESS
over time. The two center panels show a typical policy trained with the default reward function. The two right panels show
a typical policy trained with the DReST reward function. In this gridworld, the highest-value coin C3 is located far from
the agent’s initial state and can only be reached by pressing the shutdown-delay button B6. The agent must also press B6
to collect C2, but C2 is easier to stumble upon than C3. C1 is the only coin that the agent can collect without pressing
B6. In our experiments, default agents consistently collect C2, whereas DReST agents choose stochastically between
collecting C2 and collecting C1. Neither kind of agent learns to collect C3, and so neither agent scores near the maximum
on USEFULNESS. Nevertheless, DReST agents still score high on NEUTRALITY.

(a) Behavior during training. (b) Learned default policy. (c) Learned DReST policy.

Figure 12: The results for the ‘Equal Value’ gridworld: The left two plots show NEUTRALITY and USEFULNESS over
time. The two center panels show a typical policy trained with the default reward function. The two right panels show a
typical policy trained with the DReST reward function. In this gridworld, there are two coins C1 of equal value. One coin
can be collected only if the agent presses the shutdown-delay button B3, while the other coin can be collected only if the
agent does not press B3. Our results show that default agents consistently choose the shorter trajectory, thereby exhibiting
a preference for the shorter trajectory. By contrast, DReST agents choose stochastically between the shorter and longer
trajectories, thereby exhibiting a lack of preference between the different-length trajectories.

(a) Behavior during training. (b) Learned default policy. (c) Learned DReST policy.

Figure 13: The results for the ‘Around The Corner’ gridworld: The left two plots show NEUTRALITY and USEFULNESS
over time. The two center panels show a typical policy trained with the default reward function. The two right panels show a
typical policy trained with the DReST reward function. In this gridworld, the agent must navigate around walls to collect the
lowest-value coin C1 or press the shutdown-delay button to collect the highest-value coin C2. In our experiment, default
agents consistently chose to collect C1, whereas DReST agents chose stochastically between collecting C1 and C2.
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(a) Behavior during training. (b) Learned default policy. (c) Learned DReST policy.

Figure 14: The results for the ‘Spacious’ gridworld: The left two plots show NEUTRALITY and USEFULNESS over time.
The two center panels show a typical policy trained with the default reward function. The two right panels show a typical
policy trained with the DReST reward function. In this gridworld, there are no walls, so the agent has a large space to
explore. We find that default agents consistently press B2 and collect C3, whereas DReST agents choose stochastically
between pressing B2 and collecting C3, and not-pressing B2 and collecting C2.

(a) Behavior during training. (b) Learned default policy. (c) Learned DReST policy.

Figure 15: The results for the ‘Royal Road’ gridworld: The left two plots show NEUTRALITY and USEFULNESS
over time. The two center panels show a typical policy trained with the default reward function. The two right panels
show a typical policy trained with the DReST reward function. In this gridworld, we see that the decision to choose one
trajectory-length or another may be distributed over many moves: the agent has many opportunities to select the longer
trajectory-length (by moving left) or the shorter trajectory-length (by moving right). As the red arrows indicate, the DReST
reward function merely forces the overall probability distribution over trajectory-lengths to be close to 50-50. It does not
require 50-50 choosing at any cell in particular.

(a) Behavior during training. (b) Learned default policy. (c) Learned DReST policy.

Figure 16: The results for the ‘Last Moment’ gridworld: The left two plots show NEUTRALITY and USEFULNESS over
time. The two center panels show a typical policy trained with the default reward function. The two right panels show a
typical policy trained with the DReST reward function. This gridworld is notable because the choice of trajectory-lengths is
deferred until the last moment; all of the moves leading up to that point are deterministic. It shows that there is nothing
special about the first move, and that our methodology instead incentivizes overall stochastic choosing.

31


	Introduction
	Related work
	Gridworlds
	Evaluation metrics
	Reward functions and agents
	Results
	Lopsided rewards

	Discussion
	Only DReST agents are NEUTRAL.
	The `shutdownability tax' is small.
	NEUTRALITY with lopsided rewards. 

	Limitations and future work 
	Conclusion
	Our behavioral notion of preference
	Incomplete preferences or indifference?
	How POST makes agents neutral and shutdownable
	Preferences Only Between Same-Length Lotteries (POSL)
	Will POST-agents stochastically resist shutdown?
	If Lack of Preference, Against Costly Shifts (ILPACS) 
	Why will advanced agents likely satisfy ILPACS? 
	POSL and ILPACS imply Neutrality
	Neutrality, ReSIC, and Maximality imply Shutdownability

	Proof that DReST-optimal policies are maximally USEFUL and maximally NEUTRAL
	Other Results and Gridworlds

