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Abstract. The purpose of this paper is to address some ambiguities and misunderstand-
ings that appear in previous studies of population ethics. In particular, we examine the
structure of intervals that are employed in assessing the value of adding people to an
existing population. Our focus is on critical-band utilitarianism and critical-range util-
itarianism, which are commonly-used population theories that employ intervals, and we
show that some previously assumed equivalences are not true in general. The possible
discrepancies can be attributed to the observation that critical bands need not be equal to
critical sets. The critical set for a moral quasi-ordering is composed of all utility numbers
such that adding someone with a utility level in this set leads to a distribution that is not
comparable to the original (non-augmented) distribution. The only case in which critical
bands and critical sets coincide obtains when the critical band is an open interval. In this
respect, there is a stark contrast between critical-band utilitarianism and critical-range
utilitarianism: the critical set that corresponds to a critical-range quasi-ordering always
coincides with the interval that is used to define the requisite quasi-ordering. As a con-
sequence, an often presumed equivalence of critical-band utilitarianism and critical-range
utilitarianism is not valid unless, again, the critical band and the critical range (and,
consequently, the requisite critical sets) are given by the same open interval.
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1 Introduction

The question of why and how non-comparabilities and incommensurabilities arise remains
a central challenge in ethics; see, for example, Levi (1986) and Chang (1997, 2015).
While various explanations have been proposed, an extensively debated issue continues
to be the existence and the identity of persons. When the number and the identities
of those in existence differ across alternative states of affairs, these states often are non-
comparable or incommensurable. The resulting lack of comparability typically stems from
two fundamental difficulties: determining what constitutes a valuable life, and comparing
the welfare of distinct individuals in a meaningful way; see Parfit (2016), Nebel (2022),
and Rabinowicz (2022).

This paper examines two specific perspectives in population ethics—critical-band util-
itarianism and critical-range utilitarianism—which have generated controversy since the
earliest discussions of the presence of non-comparabilities. According to these views, an
individual joining the world is not necessarily undesirable, even if it is not necessarily
desirable or equally good either. Rather, these theories propose that there is an interval
of well-being levels that creates non-comparability in evaluating the value of existence.
Consider a scenario where an individual with a particular level of well-being joins the
world, resulting in non-comparability. Would an individual with a well-being level very
close to this level produce the same result? This question directly relates to whether the
relevant interval is open or closed. Given the complexity of the literature that evolved
throughout decades, a formal analysis is required to clarify these issues. Our purpose
is to addresses this topic, which appears to have been overlooked so far in spite of its
significance.

Section 2 explains the background of this paper and the main concepts that we ex-
amine. In Section 3, we present our definitions and notational conventions. In addition,
we introduce two types of utilitarian theories that allow for non-comparabilities—namely,
critical-band utilitarianism and critical-range utilitarianism. Our main results are pre-
sented in Section 4, where we examine some logical relationships within and between the
critical-band utilitarian and the critical-range utilitarian theories. Section 5 contains a
discussion of critical sets. In particular, we establish a variant of a result by Blackorby,
Bossert, and Donaldson (1996, 2005). This observation demonstrates that, under some
plausible conditions, the critical set for a moral quasi-ordering (a reflexive and transi-
tive relation that need not be complete) must be an interval. Section 6 concludes. The
proofs of all formal results are collected in Appendix A. In Appendix B, we show that our
definition of critical-range utilitarianism is equivalent to that of Rabinowicz (2009).

2 Critical-band utilitarianism, critical-range utilitar-

ianism, and critical sets

In population ethics, the central issue is how to assess the comparative goodness of states
of affairs when the size and the composition of the population may change. If a welfarist
position is adopted, these states can be compared by establishing a goodness relation
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that is capable of comparing the distributions of lifetime well-being that obtain in each
state. We use the terms utility, well-being, and lifetime well-being interchangeably. Each
individual’s well-being is represented by a numerical value.

The notion of neutrality constitutes an important benchmark. A life, taken as a whole,
is a neutral life if it is, from the viewpoint of the person leading it, neither better nor
worse than a life without any experiences. We note that there are alternative accounts
of neutrality but, because this choice does not affect the observations reported in this
paper, any of these alternative options would do just as well. Following the standard
convention in population ethics, we normalize the utility level that represents a neutral
life to zero. We assume that, with this normalization, individual levels of lifetime well-
being are numerically significant.

A critical level is, in general, distinct from a neutral level of utility. If an individual
whose utility is at the critical level is added to a given population, the resulting distribution
is, according to the moral goodness relation, neither better nor worse than the original,
provided that the utility levels of those who exist in both situations are unaffected by this
change. A critical level need not exist and if it exists, it need not be unique. Moreover,
critical levels may depend on the utility distribution under consideration. We emphasize
that a critical level need not be equal to a level that represents a neutral life.

In his monograph Weighing Lives, Broome (2004) describes what he calls the intuition
of neutrality. In particular, he writes (Broome, 2004, p. 143),

“We think intuitively that adding a person to the world is very often ethi-
cally neutral. We do not think that just a single level of wellbeing is neutral.”

He then continues (Broome, 2004, pp. 145–146),

“Interpreted axiologically, in terms of goodness, the intuition is that if a
person is added to the population of the world, her addition has no positive
or negative value in itself.”

It is important to note that Broome seems to use the expression “ethically neutral” when
referring to moral rather than individual or prudential goodness and, therefore, according
to our convention, he is making a statement about critical levels. This intuition is often
considered plausible and has been discussed by Qizilbash (2005, 2007), Rabinowicz (2009,
2012, 2022), and Gustafsson (2020).

Broome’s idea can be linked to theories in which the addition of a person may lead to a
utility distribution that is not better than, not worse than, and not as good as the original
distribution. Such a theory deviates from the traditional framework where all distributions
of lifetime well-being can be ranked—goodness relations may be incomplete, making non-
comparability a possibility. A population theory of this nature is proposed by Blackorby
and Donaldson (1992) in their comment on a criticism of Broome (1992) that was directed
towards their theory of critical-level utilitarianism (Blackorby and Donaldson, 1984). The
critical-level utilitarian orderings use the sum of the differences between individual utilities
and a fixed critical level as the criterion to rank any two utility distributions. If the critical
level is equal to zero (the level that represents neutrality), classical or total utilitarianism
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results. Once completeness is no longer required as a property of a moral goodness
relation, a critical level may be replaced by an interval of utility levels. Perhaps the
most commonly discussed theory that is based on intervals is what Blackorby, Bossert,
and Donaldson (1996, 1997) initially refer to as incomplete critical-level utilitarianism.
Later on (Blackorby, Bossert, and Donaldson, 2005), they adopt the label critical-band
utilitarianism, first employed by Broome (1996).

Critical-band utilitarianism declares a distribution morally at least as good as another
if the former is at least as good as the latter according to critical-level utilitarianism for
all values in the interval that represents the critical band. If the interval is non-degenerate
(that is, it contains more than one number), critical-band utilitarianism does not generate
an ordering but merely a quasi-ordering because some utility distributions are declared
non-comparable.

There is a subtle difference between critical-band utilitarianism and a related the-
ory examined by Qizilbash (2005, 2007), Rabinowicz (2009, 2012, 2022), Gustafsson
(2020), and Williamson (2021); Gustafsson (2020) and Williamson (2021) label this the-
ory critical-range utilitarianism. Whereas critical-band utilitarianism performs different-
number comparisons by declaring a utility distribution morally at least as good as another
whenever the former is at least as good as the latter according to the critical-level utili-
tarian criterion for all numbers in the critical band, critical-range utilitarianism replaces
the at-least-as-good-as requirement with betterness. To be precise, critical-range utilitar-
ianism declares a distribution morally better than another if the former is better than
the latter according to critical-level utilitarianism for all values in the interval. Seem-
ingly, this difference is frequently ignored because of a belief that the two formulations
are equivalent. One of the main objectives of our paper is to show that these theories are
actually different.

We stress that the difference between critical-band utilitarianism and critical-range
utilitarianism is not rooted in any difference in the types of sets that are employed.
Rather, it is the difference between at-least-as-goodness and betterness applied to each
number in the set that distinguishes the two theories. The reason why we employ these
labels is that, in an effort to avoid confusion, we want to respect the terms that have been
used in the earlier literature.

A related widespread misconception that we address here is that the numbers in a
critical band have the property that, if an individual with a lifetime level of well-being
within the critical band is added to a given distribution, the resulting distribution and
the original are non-comparable. While this is true for all numbers located in the interior
of the critical band, it is not correct for endpoints. Because of these subtle distinctions
that need to be made in order to clarify these issues, great care must be taken regarding
the choice of the terms that we employ for some similar but ultimately distinct entities.

Consider a quasi-ordering that is used to compare utility distributions. The critical
set corresponding to this quasi-ordering is the set of all utility numbers such that, if a
person with a utility level in this set is added to a given utility distribution, the resulting
augmented distribution and the original are non-comparable. As we shall demonstrate,
the critical set for a critical-band utilitarian quasi-ordering is not always equal to the
critical band that is employed in the definition of this quasi-ordering, a distinction that
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numerous earlier contributions failed to make. This imprecision goes back as far as Black-
orby, Bossert, and Donaldson (1996, 2005) who, on some occasions, seem to suggest that
the critical band consists of all levels of well-being that lead to non-comparability when
experienced by an additional person. In contrast, the critical set that corresponds to a
critical-range utilitarian quasi-orderings turns out to be equal to the critical range. This
observation highlights the difference between the two classes of quasi-orderings discussed
here.

To reiterate, we use the term critical set for the set of utility levels such that the
addition of a person who experiences a level of lifetime well-being given by any value
within this set leads to a distribution that is not comparable to the original. This critical
set is to be distinguished from the critical band that is used in the definition of a critical-
band utilitarian quasi-ordering: adding a person who experiences a level of lifetime well-
being that is located at one of the endpoints of the critical band does not lead to a
distribution that is incomparable to the initial distribution. In fact, if the upper (lower)
endpoint is included in a critical band, adding someone at this level leads to a better
(worse) distribution. Thus, the only scenario in which the critical set and the critical
band coincide obtains if the critical band is an open interval—that is, its two endpoints
are not included. If the critical band is closed or half-open (that is, it contains at least
one of its two endpoints), the critical set is a strict subset of the critical band. The critical
set and the critical range, however, always coincide, no matter whether the critical range
is open, half-open, or closed.

3 Moral quasi-orderings

As alluded to in the previous section, we operate in the standard framework of welfarist
population ethics. That is, we assess states of the world with possibly different populations
by establishing a moral goodness relation defined on distributions of lifetime well-being.

A typical well-being distribution is given by a vector, such as u = (u1, . . . , un), where
ui is the utility level of individual i and n is the population size. The set Ω of all possible
utility distributions collects all utility distributions u of all positive finite population
sizes n. Different distributions u = (u1, . . . , un) and v = (v1, . . . , vm) in Ω may have
different population sizes—that is, n need not be equal to m. We ignore the identities
of individuals in utility distributions. Therefore, even when comparing the same-number
utility distributions u = (u1, . . . , un) and v = (v1, . . . , vn), ui and vi may represent the
utility levels of different individuals. This means that our approach respects the principle
of anonymity.

A life, taken as a whole, is neutral if it is, from the viewpoint of the person leading it, as
good as a life without any experiences. Other accounts of neutrality have been proposed
but, for our purposes, it does not matter which of them applies; our observations are
independent of this choice. Following the standard convention in population ethics, we
normalize the individual utilities so that neutrality is represented by a utility level of zero.

Moral judgments are represented by a goodness relation R defined on the set Ω of
utility distributions. Because R is interpreted as a goodness relation, uRv means that u
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is considered at least as good as v. As usual, the betterness relation P and the equal-
goodness relation I corresponding to R are defined as

uPv ⇔ uRv and ¬vRu

and
uIv ⇔ uRv and vRu.

Thus, uPv is interpreted as u is better than v, and uIv means that u and v are equally
good. It is easy to see that uRv holds if and only if either uPv or uIv holds.

A critical level of utility is an attribute of a moral goodness relation. If an individual
whose lifetime well-being is at the critical level is added to a given utility distribution,
the augmented distribution is, according to the moral goodness relation, neither better
nor worse than the original. A critical level need not be equal to a level that represents
a neutral life.

The standard assumption in the literature is that R is an ordering—a reflexive, com-
plete, and transitive relation. Reflexivity means that every distribution u is at least as
good as itself (that is, uRu), completeness demands that any two distinct distributions u
and v can be compared (that is, we have uRv or vRu whenever u is not equal to v), and
transitivity is the usual coherence requirement that, whenever a distribution u is at least
as good as a distribution v (that is, uRv) and v is at least as good as a distribution w
(that is, vRw), then u must be at least as good as w (that is, uRw).

This paper focuses on moral goodness relations that allow for non-comparable utility
distributions. As a result, the relations that we consider are quasi-orderings—reflexive
and transitive relations that need not be complete. We write uNv when two distributions
u and v are non-comparable, that is,

uNv ⇔ ¬uRv and ¬vRu.

Clearly, an ordering is a complete quasi-ordering.
An example of a goodness relation that is an ordering is classical (or total) utilitari-

anism. In this case, the relation R is defined by letting, for all population sizes n and m
and for all utility distributions u = (u1, . . . , un) and v = (v1, . . . , vm),

uRv ⇔
n∑

i=1

ui ≥
m∑
i=1

vi.

This ordering is the cornerstone of one of the most well-established theories in ethics and
welfare economics. However, as first pointed out by Parfit (1976, 1982, 1984), utilitarian-
ism is afflicted with a fundamental difficulty. This is because it implies what Parfit refers
to as the repugnant conclusion. The repugnant conclusion is implied if, for any arbitrarily
large population of size n in which everyone enjoys an arbitrarily high level of well-being ξ,
and for any utility level ε above neutrality but arbitrarily close to it, there exists a larger
population size m > n such that everyone alive experiences a lifetime level of well-being
ε, and the latter distribution is considered better than the former. In other words, if the
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repugnant conclusion obtains, mass poverty can be used to substitute for quality of life,
no matter how close to neutrality everyone’s utility may be. The fundamental problem
with classical utilitarianism is that its critical level coincides with the level that represents
a neutral life.

A possible way to avoid the repugnant conclusion is proposed by Blackorby and Don-
aldson (1984). Critical-level utilitarianism is a class of goodness orderings that generalizes
total utilitarianism by allowing a fixed critical level to diverge from the level that repre-
sents a neutral life. Suppose that this critical level is given by the number α, which may
be positive, equal to zero (the level that represents neutrality), or negative. Critical-level
utilitarianism with a critical level α is defined by letting, for all population sizes n and
m, and for all utility distributions u = (u1, . . . , un) and v = (v1, . . . , vm),

uRv ⇔
n∑

i=1

[ui − α] ≥
m∑
i=1

[vi − α].

It is immediate that total utilitarianism results if α is equal to zero—and, therefore, the
repugnant conclusion is entailed. The repugnant conclusion is also implied for negative
values of the critical level α. For positive critical levels, however, the repugnant conclusion
is avoided. See Blackorby and Donaldson (1984) for a detailed discussion of critical-level
utilitarianism.

In the case of critical-level utilitarianism, there is a single utility number that corre-
sponds to a critical level. This feature is criticized by Broome (1992), who argues that
a single critical level is difficult to identify and justify. In their comment on Broome
(1992), Blackorby and Donaldson (1992) propose an incomplete variant of critical-level
utilitarianism that employs a (non-degenerate and bounded) interval to define a class of
moral quasi-orderings.

The theory outlined by Blackorby and Donaldson (1992) is formally developed and
discussed in a series of contributions by Blackorby, Bossert, and Donaldson (1996, 1997,
2005). They propose the class of critical-band utilitarian quasi-orderings, initially la-
beled incomplete critical-level utilitarianism in Blackorby, Bossert, and Donaldson (1996,
1997). A goodness relation R is critical-band utilitarian if there exists a non-degenerate
and bounded interval Q such that, for all population sizes n and m and for all utility
distributions u = (u1, . . . , un) and v = (v1, . . . , vm),

uRv ⇔

[
n = m and

n∑
i=1

ui ≥
m∑
i=1

vi

]
or[

n ̸= m and
n∑

i=1

[ui − c] ≥
m∑
i=1

[vi − c] for all c ∈ Q

]
. (1)

A non-degenerate interval is a set Q of real numbers that includes at least two elements
and, for any two a, b ∈ Q such that a < b, the number c is in Q for all c such that a < c < b.
Boundedness of Q means that there exist numbers K and K such that K < c < K for
all c in Q—that is, the values in the interval cannot be unboundedly low or unboundedly

7



high. Whenever appropriate to avoid ambiguities, we use RQ
b to denote the critical-band

utilitarian quasi-ordering associated with the non-degenerate and bounded interval Q.
Clearly, a critical-band utilitarian quasi-ordering is not complete because a distribution
u with n people may be at least as good as a distribution v with m ̸= n people according
to critical-level utilitarianism with a critical level c in Q, but v may be better than u
according to critical-level utilitarianism with another critical level c′ in Q.

Observe that, according to critical-band utilitarianism, a utility distribution is at
least as good as another if the former is at least as good as the latter for all critical-level
utilitarian relations associated with the critical band. That is, the critical-band criterion is
defined in terms of at-least-as-goodness relations—and not in terms of betterness relations.
As we explain later, replacing the weak inequality with a strict inequality in (1) leads, in
general, to a different class of quasi-orderings. This clarification is of importance because
there appears to be a widely held misperception to the effect that the two formulations are
interchangeable. The ambiguity can be traced back to Blackorby, Bossert, and Donaldson
(1996) who use at-least-as-goodness on some occasions but betterness on others to describe
critical-band utilitarianism.

Notably, when two populations with different sizes are compared by critical-band
utilitarianism, there is no possibility of equal goodness. Different-number comparisons of
critical-band utilitarianism are defined by the second line of (1), which means that u is
morally at least as good as v if and only if u is at least as good as v according to all critical-
level utilitarian relations defined with critical levels c ∈ Q, the critical band. Therefore, if
the critical-band utilitarian criterion declares equal goodness for two distributions u and
v with different population sizes, it must be true that[

n ̸= m and
n∑

i=1

[ui − c] =
m∑
i=1

[vi − c] for all c ∈ Q

]
.

However, this is impossible because the requisite equality cannot be satisfied by more
than one value of c and, therefore, it cannot be satisfied for all values in Q; note that this
interval is assumed to be non-degenerate—that is, it cannot contain a single number only.
In sum, there are only two possibilities in different-number comparisons of critical-band
utilitarianism: either betterness or non-comparability obtains.

Population theories that are based on intervals have been discussed in numerous sub-
sequent contributions, including those of Qizilbash (2005, 2007), Rabinowicz (2009, 2012,
2022), and Gustafsson (2020). Rabinowicz proposes a theory that can, in part, be de-
scribed as follows. There exists a non-degenerate and bounded interval Q such that,
for all population sizes n and m and for all utility distributions u = (u1, . . . , un) and
v = (v1, . . . , vm),

uRv ⇔

[
n = m and

n∑
i=1

ui ≥
m∑
i=1

vi

]
or[

n ̸= m and
n∑

i=1

[ui − c] >
m∑
i=1

[vi − c] for all c ∈ Q

]
.
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We refer to these criteria as critical-range utilitarian quasi-orderings. Observe that they
differ from the critical-band utilitarian quasi-orderings in that a weak inequality is re-
placed by a strict inequality when defining different-number comparisons. Although this
difference is not rooted in any divergence of the intervals Q being used but, rather, in
the type of inequality that applies, we choose to distinguish the two by means of the
terms critical band versus critical range. Our motivation is to respect the nomenclature
that developed in the literature but we stress that the distinction rests on the different
inequalities being used. With this caveat in mind, we think that no ambiguities should
arise.

In analogy to the critical-band utilitarian quasi-orderings, we write RQ
r for the critical-

range utilitarian quasi-ordering associated with the non-degenerate and bounded interval
Q.

We note that Rabinowicz (2009, p. 404; 2022, p. 122) uses a slightly different formu-
lation of this theory. Two of his postulates are expressed as

(i) u is better than v if and only if
∑n

i=1[ui − c] >
∑m

i=1[vi − c] for all c ∈ Q;

(ii) u is as good as v if and only if
∑n

i=1[ui − c] =
∑m

i=1[vi − c] for all c ∈ Q,

and this is indeed equivalent to our definition of critical-range utilitarianism. The reason
is that part (ii) can only ever apply to same-number comparisons; again, if n ̸= m, the
requisite equality cannot be satisfied for all values in the non-degenerate interval Q. A
formal proof of the equivalence of the two definitions is provided in Appendix B.

Rabinowicz labels his proposal neutral-range utilitarianism (Rabinowicz, 2009, 2012,
2022) because his interpretation of the interval is that it represents levels of neutrality
rather than critical levels. The term critical-range utilitarianism is used by Gustafsson
(2020) and Williamson (2021); see also Thomas (2023).

It seems to be assumed (at least implicitly) in numerous contributions that critical-
range utilitarianism is identical to critical-band utilitarianism; see also our earlier remarks
to the effect that weak and strict inequalities are used interchangeably by Blackorby,
Bossert, and Donaldson (1996). As another instance, note that Rabinowicz (2022, p. 123)
writes (see also Rabinowicz, 2009, p. 403),

“This axiology is formally identical with the theory that has been put
forward by Blackorby, Bossert and Donaldson (1996).”

Qizilbash (2005, 2007), Gustafsson (2020), and Williamson (2021) also claim that critical-
range utilitarianism is proposed by Blackorby, Bossert, and Donaldson (1996, 1997).
Statements of this nature are correct only if critical-range utilitarianism is identical to
critical-band utilitarianism. As we demonstrate in the following section, this is not the
case in general but only under the additional assumption that the interval Q be open.

4 Equivalences and non-equivalences

The notion of a critical set is an essential ingredient when analyzing quasi-orderings in
population ethics. Following Blackorby, Bossert, and Donaldson (1996, 2005), we define
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the critical set CS(u) of a utility distribution u for a moral quasi-ordering R as the set
of utility levels that, if experienced by an additional person, lead to a utility distribution
that is not comparable to the original distribution u according to R. Thus, this critical
set is defined as

CS(u) = {c ∈ R | (u, c)Nu},

where R is the set of all possible utility values, given by the set of all real numbers, and
(u, c) is the augmented distribution; that is, (u, c) = (u1, . . . , un, c) if u = (u1, . . . , un).

In general, critical sets can depend on the utility distribution under consideration, as
observed by Blackorby, Bossert, and Donaldson (1996, 2005). However, in analogy to
Blackorby, Bossert, and Donaldson (1996, 2005), we assume that these critical sets do not
depend on the utility distribution under consideration; that is, that there exists a set C
such that

C = CS(u) for all u ∈ Ω.

This assumption of critical-set independence is fairly innocuous in the context of quasi-
orderings that are based on utilitarian considerations. This is the case because the
quasi-orderings that we examine in this paper satisfy existence independence, which is
a variable-population version of separability. Existence independence requires that, for
any three utility distributions u, v, and w, augmenting u and v by w does not change the
relative goodness of u and v—that is, u is at least as good as v if and only if (u,w) is at
least as good as (v, w). In other words, the (non)-existence of those associated with the
distribution w does not affect the relative ranking of the distributions u and v according
to R. As a consequence of existence independence, the critical sets for a quasi-ordering R
are independent of the utility distributions to be compared once a person is added to the
population. Thus, the critical set CS(u) is invariant across utility distributions. Black-
orby, Bossert, and Donaldson (1996, 2005) impose a weaker property that still implies
distribution-invariance of the critical sets. Existence independence has gained promi-
nence in the recent literature on population ethics (and on the notion of fanaticism) due
to its analytical tractability and intuitive appeal when comparing populations of different
sizes; see, for example, Goodsell (2021), Thomas (2023), and Russell (2024).

If RQ
b (resp. RQ

r ) is the critical-band (resp. critical-range) utilitarian quasi-ordering
associated with the non-degenerate and bounded interval Q, the critical set for RQ

b (resp.
RQ

r ) is denoted by CQ
b (resp. CQ

r ).
A few further definitions are required for the statements of our results. Given a non-

degenerate and bounded interval Q with endpoints c and c such that c < c, let inf Q = c,
supQ = c, and intQ = {c ∈ R | c < c < c} denote the infimum, the supremum, and
the interior of Q, respectively. The infimum is the lower endpoint of Q, the supremum is
the upper endpoint of Q, and the interior is composed of all points strictly between the
two endpoints. Note that Q may or may not contain one or both of its endpoints—that
is, Q may be equal to the closed interval [c, c] = {c ∈ R | c ≤ c ≤ c}, the open interval
(c, c) = {c ∈ R | c < c < c}, or one of the half-open intervals [c, c) = {c ∈ R | c ≤ c < c}
and (c, c] = {c ∈ R | c < c ≤ c}.

Our first result establishes an equivalent formulation of critical-band utilitarianism.
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Theorem 1. Let Q be a non-degenerate and bounded interval. For all population sizes
n and m, for all utility distributions u = (u1, . . . , un), and for all utility distributions
v = (v1, . . . , vm), uR

Q
b v if and only if

(i) n = m and
n∑

i=1

ui ≥
n∑

i=1

vi;

or

(ii) n > m and
n∑

i=1

[ui − c] >
m∑
i=1

[vi − c] for c = inf Q and for all c ∈ intQ and (2)

n∑
i=1

[ui − c] ≥
m∑
i=1

[vi − c] for c = supQ; (3)

or

(iii) n < m and
n∑

i=1

[ui − c] >
m∑
i=1

[vi − c] for c = supQ and for all c ∈ intQ and (4)

n∑
i=1

[ui − c] ≥
m∑
i=1

[vi − c] for c = inf Q. (5)

Thus, critical-band utilitarianism declares one distribution to be better than another
with a different population size if the former is better than the latter according to critical-
level utilitarianism for all elements of the critical band Q, except for the endpoints of Q.
This is the case even though the definition of these quasi-orderings is based on at-least-
as-goodness relations. Also, Theorem 1 implies that the lower and upper endpoints of a
critical band Q play a crucial role even if Q is not a closed interval—that is, even if Q
does not contain one or both of the endpoints.

To illustrate, suppose that the population size of u is larger than that of v (that is,
n > m). In this case, critical-band utilitarianism declares u to be least as good as v if and
only if the former is better than the latter for all critical-level utilitarian orderings with a
critical level in the half-open interval [c, c), and the former is at least as good as the latter
for the critical-level utilitarian ordering with the critical level c. Therefore, comparisons
that involve the endpoints c and c matter.

Theorem 1 can be employed to obtain the following equivalence result regarding
critical-band utilitarian quasi-orderings.

Theorem 2. Suppose that c, c ∈ R are such that c < c. Then

R
[c,c]
b = R

[c,c)
b = R

(c,c]
b = R

(c,c)
b .

This theorem states that a critical-band utilitarian quasi-ordering is completely deter-
mined by the endpoints of its critical band; whether one or both of these endpoints are
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members of the interval is of no relevance because all four of the associated quasi-orderings
are identical. This is the case because the critical sets for all of the four possible intervals
coincide and are given by the corresponding open interval—that is,

C
[c,c]
b = C

[c,c)
b = C

(c,c]
b = C

(c,c)
b = (c, c)

for all c, c ∈ R such that c < c.

As an example, consider the critical-band utilitarian quasi-ordering R
[0,2]
b associated

with the critical band Q = [0, 2]. According to our results, the critical set for this quasi-

ordering is given by C
[0,2]
b = (0, 2). Suppose that u = (u1, . . . , un) is a utility distribution

with population size n. It follows that

(u, 2)R
[0,2]
b u ⇔

n∑
i=1

[ui − c] + (2− c) ≥
n∑

i=1

[ui − c] for all c ∈ [0, 2]

⇔ 2 ≥ c for all c ∈ [0, 2]. (6)

The inequality in (6) is always true and, therefore, it follows that (u, 2)R
[0,2]
b u. As a

consequence, the endpoint 2 cannot belong to the critical set C
[0,2]
b . That the endpoint 0

cannot be a member of C
[0,2]
b can be shown analogously. This suggests that considering

open intervals is natural for the case of critical-band utilitarianism because this is the
only case in which the critical band and the critical set coincide.

In contrast, the critical set for a critical-range utilitarian quasi-ordering always coin-
cides with the interval that defines this quasi-ordering. This observation applies to all
four types of intervals. Therefore, there is a marked difference between critical-band util-
itarianism and critical-range utilitarianism because, in the former case, this equivalence
only obtains in the case of an open interval.

Theorem 3. Suppose that Q is a non-degenerate and bounded interval. Then CQ
r = Q.

Theorem 3 shows that the critical set CQ
r for the critical-range utilitarian quasi-

ordering RQ
r associated with a non-degenerate and bounded interval Q is equal to Q

itself, no matter whether Q is closed, half-open, or open. This implies that there are some
subset relationships between the four critical-range quasi-orderings R

[c,c]
r , R

[c,c)
r , R

(c,c]
r , and

R
(c,c)
r for any two endpoints c and c with c < c.
For instance, consider the critical ranges [c, c] and [c, c). Because the critical set for a

critical-range utilitarian quasi-ordering coincides with the critical range that defines this
relation, it follows that distributions of the type (u, c) and u can be compared according

to R
[c,c)
r but not according to R

[c,c]
r —the number c is in the critical set C

[c,c]
r but not in

C
[c,c)
r . As a consequence, (u, c) is better than u according to R

[c,c)
r but not according to

R
[c,c]
r : because the critical set for the latter quasi-ordering contains c, the two distributions

are non-comparable. In general, whenever a critical range Q is a strict subset of a critical
range Q′, it follows immediately that the critical-range utilitarian quasi-ordering RQ

r is a
strict superset of the critical-range quasi-ordering RQ′

r because more pairs of distributions
can be compared according to the former. Thus, we obtain the subset relationships

R[c,c]
r ⊊ R(c,c]

r ⊊ R(c,c)
r and R[c,c]

r ⊊ R[c,c)
r ⊊ R(c,c)

r .
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CRU with [c, c]

CRU with [c, c) CRU with (c, c]

CRU with (c, c) = CBU with (c, c)

Figure 1: Relationships between critical-range utilitarian and critical-band utilitarian
theories

There is no subset relationship between the two quasi-orderings R
[c,c)
r and R

(c,c]
r because

distributions that involve the addition of the lower endpoint c to a given distribution u
can be compared according to the latter relation but not according to the former, and the
reverse is true for the addition of the upper endpoint c to a distribution u.

As a consequence of the above observations, it follows that critical-band utilitarianism
coincides with critical-range utilitarianism only if the interval that identifies the critical
band and the critical range is open—in each of the three remaining cases, fewer compar-
isons are possible according to critical-range utilitarianism. We summarize the results
of this section in the following corollary that combines all of our observations regarding
the critical sets for critical-band utilitarianism and for critical-range utilitarianism. A
diagrammatic illustration of this corollary is provided in Figure 1. In the diagram, the
initialism CRU means critical-range utilitarianism, and CBU stands for critical-band util-
itarianism. An arrow pointing from a theory A to a theory B (that is, A → B) means
that theory B is more complete than theory A.

Corollary 1. Suppose that c, c ∈ R are such that c < c. Then

R[c,c]
r ⊊ R(c,c]

r ⊊ R(c,c)
r = R

(c,c)
b = R

(c,c]
b = R

[c,c)
b = R

[c,c]
b

and
R[c,c]

r ⊊ R[c,c)
r ⊊ R(c,c)

r = R
(c,c)
b = R

(c,c]
b = R

[c,c)
b = R

[c,c]
b .

This corollary implies that the equivalence between critical-range utilitarianism and
critical-band utilitarianism, which is asserted by authors such as Qizilbash (2005, 2007),
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Rabinowicz (2009, 2012, 2022), Gustafsson (2020), and Williamson (2021), is correct only
when the critical band or the critical range Q is an open set.

So far, we have restricted attention to moral quasi-orderings that are based on utili-
tarianism. However, there is a significant axiological literature that proposes prioritarian
principles as an alternative; see Adler (2012) and Adler and Holtug (2019). The funda-
mental nature of prioritarianism is to assign relatively higher priority to individuals with
lower utility levels. Prioritarianism has been examined in the context of population ethics
by Brown (2007), Holtug (2022), and Thomas (2022), to name but a few. In view of this
interest in prioritarian population theories, we note that it is straightforward to extend
our analysis to the case of prioritarianism. All of our formal results remain valid for prior-
itarianism once we define critical-band prioritarianism and critical-range prioritarianism
correspondingly.

5 Critical sets and intervals

An important observation is that both critical-band utilitarianism and critical-range util-
itarianism employ a non-degenerate and bounded interval in the definition of the requi-
site quasi-orderings—and the critical sets associated with these quasi-orderings are non-
degenerate and bounded intervals as well. This raises the question whether more general
formulations may be possible. In this section, we use a variant of a result established by
Blackorby, Bossert, and Donaldson (1996, Lemma 1) and a new observation to illustrate
that this structure is a consequence of some mild and quite uncontroversial assumptions.

Our first result in this section differs from that of Blackorby, Bossert, and Donaldson in
two respects. First, we employ a slightly weaker property than the strong Pareto principle
used by them. Second, the formal statement of our theorem is restricted to the case in
which critical sets are distribution-independent. However, as can be verified easily, our
observation remains true in the more general setting in which Blackorby, Bossert, and
Donaldson’s result is valid.

The weakening of strong Pareto that we employ is the following monotonicity condi-
tion.

Monotonicity. For all population sizes n and for all utility distributions u = (u1, . . . , un)
and v = (v1, . . . , vn), if ui ≥ vi for all i ∈ {1, . . . , n} with at least one strict inequality,
then u is at least as good as v according to R.

Recall that the property of strong Pareto requires betterness instead of the at-least-as-
goodness in its consequent.

Below is our variant of Blackorby, Bossert, and Donaldson’s (1996) result, which ap-
pears as part of their Lemma 1.

Theorem 4. Suppose that R is a transitive relation. If R satisfies monotonicity and the
critical set C of R contains at least two elements, then C is a non-degenerate interval.

Theorem 4 provides an intuitively appealing explanation of why critical sets are given
by non-degenerate intervals in the population theories considered in this paper. To see why
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the assumption of boundedness can be plausibly justified as well, consider the following
property.

Existence of comparable pairs. For any population size n and for any utility distri-
bution u = (u1, . . . , un), there exist a sufficiently low utility level a and a sufficiently high
utility level b with a < b such that (u, b)Ru and uR(u, a).

An axiom of this kind is suggested by Broome (2009), who writes (Broome, 2009, p. 412)

“There may be limits: perhaps it is a bad thing to add a person whose
life would be miserable, and perhaps a good thing to add a person whose life
would be wonderful. But the intuition is that, at least for a range of levels of
wellbeing, adding a person within that range has neutral value.”

Adding the axiom of existence of comparable pairs to the properties employed in
Theorem 4, it follows that the critical set must be bounded in addition to being a non-
degenerate interval.

Theorem 5. Suppose that R is a transitive relation. If R satisfies monotonicity and
existence of comparable pairs, and the critical set C for R contains at least two elements,
then C is a non-degenerate and bounded interval.

As mentioned earlier, Broome’s intuition states that the critical set does not contain
only a single utility level. Hence, according to this theorem, the conjunction of his intuition
and his point about limits implies that the critical set must be a non-degenerate and
bounded interval.

We note that the results of Theorems 4 and 5 are of significance to axiological theories.
This is the case because there are some important theories that do not satisfy strong
Pareto but satisfy monotonicity. For example, increases of individual utility above a
sufficientarian threshold are morally relevant for some sufficientarian theories. This is
what is called the negative thesis (Casal, 2007). An important case in point is that
the head-count approach initiated by Frankfurt (1987) satisfies monotonicity but violates
strong Pareto because it is possible that the number of those above the threshold might not
change even if all individuals are better off. The above theorems imply that the critical
set for such a sufficientarian theory must be a non-degenerate and bounded interval,
provided that there are at least two critical levels. To the best of our knowledge, there is
no sufficientarian theory that violates monotonicity; see Brown (2005), Hirose (2016), and
Bossert, Cato, and Kamaga (2022) for sufficientarian theories that satisfy strong Pareto.
In sum, a wide range of axiological theories are associated with an interval structure if
incompleteness is introduced.

6 Concluding remarks

This paper provides what we think of as some important clarifications. There are some
misperceptions in the earlier literature regarding perceived equivalences between vari-
ous population theories that accommodate non-comparabilities, and our contribution is
intended to resolve the ambiguities that may arise from them.
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The topic of non-comparability is of growing relevance; there has been a substantial
increase in the number of contributions to this topic over the recent past. We hope that
our observations serve to further enhance our understanding of the complex issues that
cannot but arise in the context of population theories that allow for incomplete moral
goodness relations.

This paper shows that there are four distinct types of theories that accommodate non-
comparabilities in population ethics. It seems to us that the asymmetry associated with
half-open intervals renders the corresponding theories less plausible than those based on
open or closed intervals. If this position is adopted, there remain only two possible choices.
The first of these is critical-range utilitarianism with an open critical set—which, in view of
the openness assumption, is identical to critical-band utilitarianism. The second theory
employs closed critical sets, in which case only critical-range utilitarianism is possible.
Returning to Broome’s intuition of neutrality, the intuition expressed in the following
paragraph seems plausible.

If an individual i is added to a given population and his or her addition
has no positive or negative value in itself, then the addition of an individual
whose utility level is very close to i’s utility level has no positive or negative
value in itself.

To see this point, let us consider a utility level c, which is in the critical set. Thus,
adding c is neither good nor bad. What Broome’s intuition requires is that this cannot
be the only critical level, which, in turn, implies that the critical set is an interval that
contains c. Now consider a sequence c1, c2, . . . of utility levels that converges to c; that
is, cm approaches c as m approaches infinity. The aforementioned intuition requires that
if m is very large, then cm is a critical level. Arguably, this requirement is plausible—
and it implies that the critical set is open. Hence, if this intuition is accepted, a theory
with an open critical set is superior to a theory that is based on a closed critical set.
Therefore, the above intuition leads us to the conclusion that critical-band utilitarianism
(or, equivalently, critical-range utilitarianism) with an open critical set emerges as the
most appealing theory among those examined in this paper.

Even if the intuition regarding the role of endpoints is not accepted, the task of
further exploring the properties of population theories based on incomplete moral relations
is of significant importance. Although theories that assume goodness relations to be
complete seem to be well-understood by now, the same cannot be said for moral quasi-
orderings, as evidenced by the observation that some demonstrably different theories were
perceived to be equivalent in much of the existing literature. A threshold-based theory
that accommodates non-comparability is introduced and discussed in Bossert, Cato, and
Kamaga (2025).

Appendix A

Proof of Theorem 1. Suppose that R is the critical-band utilitarian quasi-ordering
associated with a non-degenerate and bounded interval Q ⊆ R. Consider the population
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sizes n and m, and the distributions u = (u1, . . . , un) and v = (v1, . . . , vm). By definition,
if n = m,

uRv ⇔
n∑

i=1

ui ≥
m∑
i=1

vi.

Now suppose that n ̸= m. First, consider the case n > m. We show that uRv if and only
if (2) and (3) hold. It is straightforward that (2) and (3) together imply uRv. Suppose
that uRv. To show that (2) holds, assume that c = inf Q or c ∈ intQ. By way of
contradiction, suppose that

n∑
i=1

[ui − c] ≤
m∑
i=1

[vi − c]

Since Q is a non-degenerate interval and c = inf Q or c ∈ intQ, there exists a sufficiently
small positive real number ε such that (c+ ε) ∈ Q. Since n > m, it follows that

n∑
i=1

[ui − (c+ ε)] =
n∑

i=1

[ui − c]− nε <
m∑
i=1

[vi − c]−mε =
m∑
i=1

[vi − (c+ ε)].

This is a contradiction because uRv and (c+ ε) ∈ Q together imply

n∑
i=1

[ui − (c+ ε)] ≥
m∑
i=1

[vi − (c+ ε)].

Next, to show that (3) holds, let c = supQ and suppose, by way of contradiction, that

n∑
i=1

[ui − c] <
m∑
i=1

[vi − c].

Define the positive real number δ by

δ =
1

n−m

(
m∑
i=1

[vi − c]−
n∑

i=1

[ui − c]

)
.

Since Q is a non-degenerate interval and c = supQ, there exists ε ∈ (0, δ) such that
(c− ε) ∈ Q. We obtain

m∑
i=1

[vi − (c− ε)]−
n∑

i=1

[ui − (c− ε)] =
m∑
i=1

[vi − c]−
n∑

i=1

[ui − c]− (n−m)ε

>

m∑
i=1

[vi − c]−
n∑

i=1

[ui − c]− (n−m)δ

= 0

This is a contradiction because uRv and (c− ε) ∈ Q together imply

n∑
i=1

(ui − (c− ε)) ≥
m∑
i=1

(vi − (c− ε)).
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Finally, we consider the case n < m. We show that uRv if and only if (4) and (5) are
true. Again, it is straightforward that (4) and (5) together imply uRv. Suppose that uRv.
To show that (4) holds, assume that c = supQ or c ∈ intQ. By way of contradiction,
suppose that

n∑
i=1

[ui − c] ≤
m∑
i=1

[vi − c]

Since Q is a non-degenerate interval and c = supQ or c ∈ intQ, there exists a sufficiently
small positive real number ε such that (c− ε) ∈ Q. Since m > n, it follows that

n∑
i=1

[ui − (c− ε)] =
n∑

i=1

[ui − c] + nε <

m∑
i=1

[vi − c] +mε =
m∑
i=1

[vi − (c− ε)].

This is a contradiction because uRv and (c− ε) ∈ Q together imply

n∑
i=1

[ui − (c− ε)] ≥
m∑
i=1

[vi − (c− ε)].

Now, to show that (5) holds, let c = inf Q and suppose, by way of contradiction, that

n∑
i=1

[ui − c] <
m∑
i=1

[vi − c].

Define the positive real number δ by

δ =
1

m− n

(
m∑
i=1

[vi − c]−
n∑

i=1

[ui − c]

)
.

Since Q is a non-degenerate interval and c = inf Q, there exists ε ∈ (0, δ) such that
(c+ ε) ∈ Q. Then, we obtain

m∑
i=1

[vi − (c+ ε)]−
n∑

i=1

[ui − (c+ ε)] =
m∑
i=1

[vi − c]−
n∑

i=1

[ui − c]− (m− n)ε

>
m∑
i=1

[vi − c]−
n∑

i=1

[ui − c]− (m− n)δ

= 0

This is a contradiction because uRv and (c+ ε) ∈ Q together imply

n∑
i=1

(ui − (c+ ε)) ≥
m∑
i=1

(vi − (c+ ε)). ■

Proof of Theorem 2. We prove the case of Q′ = (c, c). The proof of the other cases
is analogous. Suppose that R and R′ are the critical-band utilitarian quasi-orderings
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associated with Q = [c, c] and Q′ = (c, c), respectively. Consider population sizes n and
m arbitrarily and let u = (u1, . . . , un), v = (v1, . . . , vm) ∈ Ω. By definition, if uRv then
uR′v holds. To show that uR′v implies uRv, suppose that uR′v. In view of Theorem 1,
we assume that n ̸= m. Define the function ∆: Q → R by, for all c ∈ Q,

∆(c) =
n∑

i=1

[ui − c]−
m∑
i=1

[vi − c].

The function ∆ is continuous on Q. From (2) and (4), uR′v implies that

∆(c) > 0 for all c ∈ intQ′ = Q′ = intQ.

Because ∆ is continuous on Q, we obtain ∆(c) ≥ 0 and ∆(c) ≥ 0. Thus, from Theorem
1, uRv follows. ■

Proof of Theorem 3. First, let R be the critical-range utilitarian relation R
[c,c]
r associ-

ated with the closed interval [c, c]. It follows that, for all population sizes n and m and
for all distributions u = (u1, . . . , un), v = (v1, . . . , vm) ∈ Ω, uRv if and only if

(i) n = m and
∑n

i=1 ui ≥
∑m

i=1 vi

or

(ii) n ̸= m and
∑n

i=1[ui − c] >
∑m

i=1[vi − c] for all c ∈ [c, c].

Consider a distribution u = (u1, . . . , un) and the augmented distribution (u, c). Then,

n∑
i=1

[ui − c] + [c− c]−
n∑

i=1

[ui − c] = c− c

{
= 0 if c = c

> 0 if c ∈ [c, c).

Thus, by definition, (u, c)Nu, implying that c belongs to the critical set. We next show
that c also belongs to the critical set. For distributions u = (u1, . . . , un) and (u, c) =
(u1, . . . , un, c), we obtain

n∑
i=1

[ui − c] + [c− c]−
n∑

i=1

[ui − c] = c− c

{
= 0 if c = c

< 0 if c ∈ (c, c].

Thus, by definition, (u, c)Nu. Finally, for distributions u = (u1, . . . , un) and (u, d) =
(u1, . . . , un, d) with d ∈ (c, c), we obtain

n∑
i=1

[ui − c] + [d− c]−
n∑

i=1

[ui − c] = d− c


> 0 if c ∈ (d, c]

= 0 if c = d

< 0 if c ∈ [c, d).

Thus, by definition, (u, d)Nu, implying that any d ∈ (c, c) belongs to the critical set.

Consequently, [c, c] is the critical set for R
[c,c]
r .

19



Now consider R
(c,c)
r , the critical-range utilitarian relation associated with the open

interval (c, c). We obtain, for all population sizes n and m and for all distributions
u = (u1, . . . , un), v = (v1, . . . , vm) ∈ Ω, uRv if and only if

(i) n = m and
∑n

i=1 ui ≥
∑m

i=1 vi

or

(ii) n ̸= m and
∑n

i=1[ui − c] >
∑m

i=1[vi − c] for all c ∈ Q = (c, c).

Consider a distribution u = (u1, . . . , un) and the augmented distribution (u, c). Then, for
all c ∈ (c, c),

n∑
i=1

[ui − c] + [c− c]−
n∑

i=1

[ui − c] = c− c > 0.

Thus, by definition, (u, c)Pu, implying that c does not belong to the critical set. Now
consider the augmented distribution (u, c). Then, for all c ∈ (c, c),

n∑
i=1

[ui − c] + [c− c]−
n∑

i=1

[ui − c] = c− c < 0.

Thus, by definition, uP (u, c), implying c does not belong to the critical set. Finally, for
any augmented distribution (u, d) with d ∈ (c, c), we obtain

n∑
i=1

[ui − c] + [d− c]−
n∑

i=1

[ui − c] = d− c


> 0 if c ∈ (d, c)

= 0 if c = d

< 0 if c ∈ (c, d).

Thus, by definition, (u, d)Nu, implying that d belongs to the critical set. Consequently,

(c, c) is the critical set for R
(c,c)
r .

The proofs that (c, c] is the critical set for R
(c,c]
r and that [c, c) is the critical set for

R
[c,c)
r are analogous. ■

Proof of Theorem 4. Although the proof is essentially the same as that used by
Blackorby, Bossert, and Donaldson (1996), we provide it for the sake of completeness.

Suppose that R is a transitive relation that satisfies monotonicity and that its critical
set C contains at least two elements. To prove that C is an interval, suppose that,
by way of contradiction, there exist a, b ∈ C and c ∈ R such that a < c < b and
c ̸∈ C. Because c is not in the critical set for R, we must have (u, c)Ru or uR(u, c).
If (u, c)Ru, monotonicity implies (u, b)R(u, c). By transitivity, it follows that (u, b)Ru,
which contradicts the assumption that b is an element of the critical set. Analogously,
if uR(u, c), monotonicity implies (u, c)R(u, a) and, by transitivity, we obtain uR(u, a).
Again, this contradicts the assumption that a is an element of the critical set. Thus, C
is an interval and, because C contains at least two elements by assumption, it is non-
degenerate. ■
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Proof of Theorem 5. Suppose that R is a transitive relation that satisfies monotonicity
and existence of comparable pairs, and that its critical set C contains at least two elements.
By Theorem 4, C is a non-degenerate interval.

To show that C is bounded above, suppose that, by way of contradiction, for all K,
there exists c ∈ C such that c ≥ K. Let u ∈ Ω. By existence of comparable pairs, there
exists a utility level b such that (u, b)Ru. Monotonicity implies that (u, b′)R(u, b) for all
b′ > b and, by transitivity, it follows that (u, b′)Ru for all b′ ≥ b. Setting K = b, it follows
that there is no c ≥ K that is an element of C, a contradiction.

That C is bounded below is proven analogously. ■

Appendix B

We prove that our definition of critical-range utilitarianism is equivalent to that of Rabi-
nowicz (2009).

According to our definition, a relation Rr is a critical-range utilitarian quasi-ordering
if there exists a non-degenerate and bounded interval Q such that, for all population sizes
n and m and for all utility distributions u = (u1, . . . , un) and v = (v1, . . . , vm),

uRrv ⇔

[
n = m and

n∑
i=1

ui ≥
m∑
i=1

vi

]
or[

n ̸= m and
n∑

i=1

[ui − c] >
m∑
i=1

[vi − c] for all c ∈ Q

]
.

Rabinowicz’s (2009) definition states that a relation R∗
r is a critical-range utilitarian

quasi-ordering if there exists a non-degenerate and bounded interval Q such that, for
all population sizes n and m, and for all utility distributions u = (u1, . . . , un) and v =
(v1, . . . , vm),

(i) uP ∗
r v ⇔

n∑
i=1

[ui − c] >
m∑
i=1

[vi − c] for all c ∈ Q and

(ii) uI∗r v ⇔
n∑

i=1

[ui − c] =
m∑
i=1

[vi − c] for all c ∈ Q.

Suppose that Q is a non-degenerate and bounded interval. To prove that Rr = R∗
r , it

is sufficient to establish that
uPrv ⇔ uP ∗

r v (7)

and
uIrv ⇔ uI∗r v (8)

for all population sizes n and m and for all utility distributions u = (u1, . . . , un) and
v = (v1, . . . , vm).
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To establish (7), observe that

uPrv ⇔

[
n = m and

n∑
i=1

ui >

m∑
i=1

vi

]
or[

n ̸= m and
n∑

i=1

[ui − c] >
m∑
i=1

[vi − c] for all c ∈ Q

]
.

Note that[
n = m and

n∑
i=1

ui >

m∑
i=1

vi

]
⇔

[
n = m and

n∑
i=1

[ui − c] >
m∑
i=1

[vi − c] for all c ∈ Q

]

because c cancels out when n = m. From this equivalence, we obtain

uPrv ⇔

[
n = m and

n∑
i=1

[ui − c] >
m∑
i=1

[vi − c] for all c ∈ Q

]
or (9)[

n ̸= m and
n∑

i=1

[ui − c] >
m∑
i=1

[vi − c] for all c ∈ Q

]
. (10)

Combining (9) and (10), it follows that

uPrv ⇔
n∑

i=1

[ui − c] >
m∑
i=1

[vi − c] for all c ∈ Q

and, therefore,
uPrv ⇔ uP ∗

r v.

We complete the proof by showing that (8) is true. By definition,

uIrv ⇔

[
n = m and

n∑
i=1

ui =
m∑
i=1

vi

]

and

uI∗r v ⇔
n∑

i=1

[ui − c] =
m∑
i=1

[vi − c] for all c ∈ Q.

We first show that if uI∗r v, then the population size n corresponding to u = (u1, . . . , un)
is the same as the population size m corresponding to v = (v1, . . . , vm). By way of
contradiction, suppose that n ̸= m. The statement uI∗r v is equivalent to

n∑
i=1

ui −
m∑
i=1

vi = (n−m)c for all c ∈ Q.
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Since Q is non-degenerate, there exist two values c1 and c2 in Q such that c1 ̸= c2.
Substituting, we obtain

n∑
i=1

ui −
m∑
i=1

vi = (n−m)c1

and
n∑

i=1

ui −
m∑
i=1

vi = (n−m)c2.

Because n ̸= m, it follows that

(n−m)c1 ̸= (n−m)c2,

a contradiction. Therefore, n = m. As a result, we have

uI∗r v ⇔

[
n = m and

n∑
i=1

[ui − c] =
m∑
i=1

[vi − c] for all c ∈ Q

]

and, because c cancels out when n = m, it follows that

uI∗r v ⇔

[
n = m and

n∑
i=1

ui =
m∑
i=1

vi

]

so that
uIrv ⇔ uI∗r v,

which completes the proof.
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